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Foreword

After an unbroken tradition of many centuries, mathematics has
ceased to be generally considered as an integral part of culture in
our era of mass education. The isolation of research scientists, the
pitiful scarcity of inspiring teachers, the host of dull and empty
commercial textbooks and the general educational trend away from
intellectual discipline have contributed to the anti-mathematical
fashion in education. It is very much to the credit of the public that
a strong interest in mathematics is none the less alive.

Various attempts have recently been made to satisfy this interest.
Together with H. Robbins I attempted in What Is Mathematics?
to discuss the meaning of mathematics. Our book was, however, ad-
dressed to readers with a certain background of mathematical knowl-
edge. More should be done on a less technical level for the large
number of people who do not have this background, but still wish
to acquire knowledge of the significance of mathematics in human
culture.

For some time I have followed with great interest Professor Morris
Kline’s work on the present book. I believe that it will prove a major
contribution and help to bring the mathematical sciences closer to
people who have not as yet appreciated the fascination .nd scope of
the subject.

R. Courant
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Preface

Now, when all these studies reach the point of inter-communion and
connection with one another, and come to be considered in their mutual
affinities, then, I think, but not till then, will the pursuit of them have
a value for our objects; otherwise there is no profit in them.

PLATO

The object of this book is to advance the thesis that mathematics has
been a major cultural force in Western civilization. Almost every-
one knows that mathematics serves the very practical purpose of
dictating engineering design. Fewer people seem to be aware that
mathematics carries the main burden of scientific reasoning and is
the core of the major theories of physical science. It is even less
widely known that mathematics has determined the direction and
content of much philosophic thought, has destroyed and rebuilt re-
ligious doctrines, has supplied substance to economic and political
theories, has fashioned major painting, musical, architectural, and
literary styles, has fathered our logic, and has furnished the best
answers we have to fundamental questions about the nature of man
and his universe. As the embodiment and most powerful advocate
of the rational spirit, mathematics has invaded domains ruled by
authority, custom, and habit, and supplanted them as the arbiter of
thought and action. Finally, as an incomparably fine human achieve-
ment mathematics offers satisfactions and aesthetic values at least
equal to those offered by any other branch of our culture.

Despite these by no means modest contributions to our life and
thought, educated people almost universally reject mathematics as an
intellectual interest. This attitude toward the subject is, in a sense,
justified. School courses and books have presented ‘mathematics’ as
a series of apparently meaningless technical procedures. Such mate-
rial is as representative of the subject as an account of the name,
position, and function of every bone in the human skeleton is repre-

sentative of the living, thinking, and emotional being called man.
vil
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Just as a phrase either loses meaning or acquires an unintended
meaning when removed from its context, so mathematics detached
from its rich intellectual setting in the culture of our civilization
and reduced to a series of techniques has been grossly distorted.
Since the layman makes very little use of technical mathematics, he
has objected to the naked and dry material usually presented. Con-
sequently, a subject that is basic, vital, and elevating is neglected
and even scorned by otherwise highly educated people. Indeed, igno-
rance of mathematics has attained the status of a social grace.

In this book we shall survey mathematics primarily to show how
its ideas have helped to mold twentieth-century life and thought.
The ideas will be in historical order so that our material will range
from the beginnings in Babylonia and Egypt to the modern theory
of relativity. Some people may question the pertinence of material
belonging to earlier historical periods. Modern culture, however, is
the accumulation and synthesis of contributions made by many pre-
ceding civilizations. The Greeks, who first appreciated the power of
mathematical reasoning, graciously allowing the gods to use it in
designing the universe, and then urging man to uncover the pat-
tern of this design, not only gave mathematics a major place in their
civilization but initiated patterns of thought that are basic in our
own. As succeeding civilizations passed on their gifts to modern
times, they handed on new and increasingly more significant roles
for mathematics. Many of these functions and influences of mathe-
matics are now deeply imbedded in our culture. Even the modern
contributions of mathematics are best appreciated in the light of
what existed previously.

Despite the historical approach, this book is not a history of
mathematics. The historical order happens to be most convenient for
the logical presentation of the subject and is the natural way of
examining how the ideas arose, what the motivations for investigat-
ing these ideas were, and how these ideas influenced the course of
other activities. An important by-product is that the reader may get
some indication of how mathematics as a whole has developed, how
its periods of activity and quiescence have been related to the gen-
eral course of the history of Western civilization, and how the na-
ture and contents of mathematics have been shaped by the civiliza-
tions that contributed to our modern Western one. It is hoped that
new light will be shed on mathematics and on the dominant char-
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acteristics of our age by this account of mathematics as a fashioner
of modern civilization.

We cannot, unfortunately, do more in one volume than merely
illustrate the thesis. Limitations of space have necessitated a selec-
tion from a vast literature. The interrelationships of mathematics
and art, for example, have been confined to the age of the Renais-
sance. The reader acquainted with modern science will notice that
almost nothing has been said about the role of mathematics in
atomic and nuclear theory. Some important modern philosophies of
nature, notably Alfred North Whitehead’s, have hardly been men-
tioned. Nevertheless, it is hoped that the illustrations chosen will be
weighty enough to prove convincing as well as interesting.

The attempt to highlight a few episodes in the life of mathematics
has also necessitated an over-simplification of history. In intellec-
tual, as well as political, enterprises numerous forces and numerous
individual contributions determine the outcomes. Galileo did not
fashion the quantitative approach to modern science single-handed.
Similarly, the calculus is almost as much the creation of Eudoxus,
Archimedes, and a dozen major lights of the seventeenth century as
it is that of Newton and Leibniz. It is especially true of mathematics
that, while the creative work is done by individuals, the results are
the fruition of centuries of thought and development.

There is no doubt that in invading the arts, philosophy, religion,
and the social sciences the author has rushed in where angels—
mathematical ones, of course—would fear to tread. The risk of
errors, hopefully minor, must be undertaken if we are to see that
mathematics is not a dry, mechanical tool but a body of living
thought inseparably connected with, dependent on, and invaluable
to other branches of our culture.

Perhaps this account of the achievements of human reason may
serve in some small measure to reinforce those ideals of our civiliza-
tion which are in danger of destruction today. The burning prob-
lems of the hour may be political and economic. Yet it is not in
those fields that we find evidence of man’s ability to master his diffi-
culties and build a desirable world. Confidence in man’s power to
solve his problems and indications of the method he has employed
most successfully thus far can be gained by a study of his greatest
and most enduring intellectual accomplishment—mathematics.

It is a pleasure to acknowledge help and favors received from
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many sources. I wish to thank numerous colleagues in the Washing-
ton Square College of Arts and Science of New York University for
many helpful discussions, Professor Chester L. Riess of the Brooklyn
College of Pharmacy for general criticism and particular suggestions
concerning the literature of the Age of Reason, and Mr. John Begg
of Oxford University Press for advice on the preparation of the fig-
ures and plates. Mrs. Beulah Marx is to be credited with the excel-
lent illustrations. My wife, Helen, has aided me immeasurably by
critical readings and preparation of the manuscript. I am especially
grateful to Mr. Carroll G. Bowen and Mr. John A. S. Cushman for
their advocacy of the idea of this book and for guiding the manu-
script through the process of publication at Oxford.

I am indebted to the following publishers and individuals for per-
mission to use the material indicated below. The quotation from
Alfred North Whitchead in the last chapter is taken from Science
and the Modern World, The Macmillan Co., N. Y., 1925. Permis-
sion to use the graphs of actual sounds, by Dayton C. Miller, was
granted by the Case Institute of Technology of Cleveland, Ohio.
The quotation from Edna St. Vincent Millay is from “Sonnet xlv”
of Collected Poems, edited by Norma Millay and published by Harper
and Bros., N.Y., copyright 1956 by Norma Millay Ellis. The quota-
tions from Bertrand Russell appeared in Mysticism and Logic pub-
lished by W. W. Norton and Co., Inc.,, N.Y., and George Allen and
Unwin, Ltd., London. The quotation from Theodore Merz is taken
from Volume 11 of A History of European Thought in the Nineteenth
Century published by William Blackwood and Sons, Ltd., Edinburgh
and London.

Morris Kline
New York City
August 1953
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HEN first I applied my mind to Mathematics I
Wread straight away most of what is usually given
by the mathemetical writers, and I paid special atten-
tion to Arithmetic and Geometry because they were
said to be the simplest and so to speak the way to all
the rest. But in neither case did I then meet with
authors who fully satisfied me. I did indeed learn
in their works many propositions about numbers
which I found on calculation to be true. As to fig-
ures, they in a sense exhibited to my eyes a great
number of truths and drew conclusions from cer-
tain consequences. But they did not seem to make
it sufficiently plain to the mind itself why these
things are so, and how they discovered them. Conse-
quently I was not surprised that many people, even
of talent and scholarship, should, after glancing at
these sciences, have either given them up as being
empty and childish or, taking them to be very diffi-
cult and intricate, been deterred at the very outset
from learning them. . . But when I afterwards be-
thought myself how it could be that the earliest
pioneers of Philosophy in bygone ages refused to
admit to the study of wisdom any one who was not
versed in Mathematics . . . I was confirmed in my
suspicion that they had knowledge of a species of
Mathematics very different from that which passes
current in our time.

René Descartes
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Introduction. True and False Conceptions

Stay your rude steps, or €'er your feet invade
The Muses’ haunts, ye sons of War and Trade!
Nor you, ye legion fiends of Church and Law,
Pollute these pages with unhallow’d paw!
Debased, corrupted, grovelling, and confin’d,
No definitions touch your senseless mind;

To you no Postulates prefer their claim,

No ardent Axioms your dull souls inflame;
For you no Tangents touch, no Angles meet,
No Circles join in osculation sweet!

JOHN HOOKHAM FRERE, GEORGE CANNING,
and GEORGE ELLIS

The assertion that mathematics has been a major force in the mold-
ing of modern culture, as well as a vital element of that culture,
appears to many people incredible or, at best, a rank exaggeration.
This disbelief is quite understandable and results from a very com-
mon but erroneous conception of what mathematics really is.
Influenced by what he was taught in school, the average person
regards mathematics as a series of techniques of use only to the scien-
tist, the engineer, and perhaps the financier. The reaction to such
teachings is distaste for the subject and a decision to ignore it. When
challenged on this decision a well-read person can obtain the sup-
port of authorities. Did not St. Augustine say: “The good Christian
should beware of mathematicians and all those who make empty
prophecies. The danger already exists that the mathematicians have
made a covenant with the devil to darken the spirit and to confine
man in the bonds of Hell.” And did not the Roman jurists rule, ‘con-
cerning evil-doers, mathematicians, and the like,” that, “T'o learn the
art of geometry and to take part in public exercises, an art as dam-
nable as mathematics, are forbidden.” No less a personage than the
3
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distinguished modern philosopher, Schopenhauer, described arith-
metic as the lowest activity of the spirit, as is shown by the fact that
it can be performed by a machine.

Despite such authoritative judgments and despite common opin-
ion, justified as it may be in view of the teachings in the schools, the
layman’s decision to ignore mathematics is wrong. The subject is
not a series of techniques. These are indeed the least important
aspect, and they fall as far short of representing mathematics as
color mixing does of painting. The techniques are mathematics
stripped of motivation, reasoning, beauty, and significance. If we
acquire some understanding of the nature of mathematics, we shall
see that the assertion of its importance in modern life and thought
is at least plausible.

Let us, therefore, consider briefly at this point the twentieth-
century view of the subject. Primarily, mathematics is a method of
inquiry known as postulational thinking. The method consists in
carefully formulating definitions of the concepts to be discussed and
in explicitly stating the assumptions that shall be the basis for rea-
soning. From these definitions and assumptions conclusions are de-
duced by the application of the most rigorous logic man is capable
of using. This characterization of mathematics was expressed some-
what differently by a famous seventeenth-century writer on mathe-
matics and science: ‘Mathematicians are like lovers. . . Grant a
mathematician the least principle, and he will draw from it a conse-
quence which you must alse grant him, and from this consequence
another.’

To describe mathematics as only a method of inquiry is to de-
scribe da Vinci’s ‘Last Supper’ as an organization of paint on canvas.
Mathematics is, also, a field for creative endeavor. In divining what
can be proved, as well as in constructing methods of proof, mathe-
maticians employ a high order of intuition and imagination. Kepler
and Newton, for example, were men of wonderful imaginative
powers, which enabled them not only to break away from age-long
and rigid tradition but also to set up new and revolutionary con-
cepts. The extent to which the creative faculties of man are exer-
cised in mathematics could be determined only by an examination
of the creations themselves. While some of these will appear in sub-
sequent discussion it must suffice here to state that there are now
some eighty extensive branches of the subject.
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If mathematics is indeed a creative activity, what driving force
causes men to pursue it? The most obvious, though not necessarily
the most important, motive for mathematical investigations has been
to answer questions arising directly out of social needs. Commercial
and financial transactions, navigation, calendar reckoning, the con-
struction of bridges, dams, churches, and palaces, the design of
fortifications and weapons of warfare, and numerous other human
pursuits involve problems that can best be resolved by mathematics.
It is especially true of our engineering age that mathematics is a
universal tool.

Another basic use of mathematics, indeed one that is especially
prominent in modern times, has been to provide a rational organi-
zation of natural phenomena. The concepts, methods, and conclu-
sions of mathematics are the substratum of the physical sciences.
The success of these fields has been dependent on the extent to
which they have entered into partnership with mathematics. Mathe-
matics has brought life to the dry bones of disconnected facts and,
acting as connective tissue, has bound series of detached observa-
tions into bodies of science.

Intellectual curiosity and a zest for pure thought have started
many mathematicians in pursuit of properties of numbers and geo-
metric figures and have produced some of the most original con-
tributions. The whole subject of probability, important as it is to-
day, began with a question arising in a game of cards, namely, the
proper division of a gambling stake in a game interrupted before
its close. Another most decisive contribution in no way connected
with social needs or science was made by the Greeks of the classical
period who converted mathematics into an abstract, deductive, and
axiomatic system of thought. In fact, some of the greatest contribu-
tions to the subject matter of mathematics—projective geometry, the
theory of numbers, the theory of infinite quantities, and non-Euclid-
ean geometry, to mention only those that will be within our pur-
view- constitute responses to purely intellectual challenges.

Over and above all other drives to create is the search for beauty.
Bertrand Russell, the master of abstract mathematical thought,
speaks without qualification:

Mathematics, rightly viewed, possesses . . . supreme beauty—a beauty
cold and austere, like that of sculpture, without appeal to any part of our
weaker nature, without the gorgeous trappings of painting or music, yet
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sublimely pure, and capable of a stern perfection such as only the greatest
art can show. The true spirit of delight, the exaltation, the sense of being
more than man, which is the touchstone of the highest excellence, is to be
found in mathematics as surely as in poetry.

In addition to the beauty of the completed structure, the indispen-
sable use of imagination and intuition in the creation of proofs and
conclusions affords high aesthetic satisfaction to the creator. If in-
sight and imagination, symmetry and proportion, lack of superfluity,
and exact adaption of means to ends are comprehended in beauty
and are characteristic of works of art, then mathematics is an art
with a beauty of its own.

Despite the clear indications of history that all of the factors above
have motivated the creation of mathematics there have been many
erronieous pronouncements. There are the charges—often made to
excuse neglect of the subject—that mathematicians like to indulge
in pointless speculations or that they are silly and useless dreamers.
To these charges a crushing reply can readily be made. Even purely
abstract studies, let alone those motivated by scientific and engineer-
ing needs, have proved immensely useful. The discovery of the conic
sections (parabolas, ellipses, and hyperbolas) which, for two thou.
sand years, amounted to no more than ‘the unprofitable amusement
of a speculative brain,” ultimately made possible modern astronomy,
the theory of projectile motion, and the law of universal gravitation.

On the other hand, it is a mistake to assert, as some ‘socially
minded’ writers do rather sweepingly, that mathematicians are stim-
ulated entirely or even largely by practical considerations, by the
desire to build bridges, radios, and airplanes. Mathematics has made
these conveniences possible, but the great mathematicians rarely
have them in mind while pursuing their ideas. Some were totally
indifferent to the practical applications, possibly because these were
made centuries later. The idealistic mathematical musings of Py-
thagoras and Plato have led to far more significant contributions
than the purposeful act of the warehouse clerks whose introduction
of the symbols + and — convinced one writer that ‘a turning point
in the history of mathematics arose from the common social herit-
age. . . It is no doubt true that almost every great man occupies
himself with the problems of his age, and that prevailing beliefs
condition and limit his thinking. Had Newton been born two hun-
dred years earlier he would most likely have been a masterful theo-
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logian. Great thinkers yield to the intellectual fashions of their times
as women do to fashions in dress. Even those creative geniuses to
whom mathematics was purely an avocation pursued the problems
that were agitating the professional mathematicians and scientists.
Nevertheless, these ‘amateurs’ and mathematicians generally have
not been concerned primarily with the utility of their work.

Practical, scientific, aesthetic, and philosophical interests have all
shaped mathematics. It would be impossible to separate the con-
tributions and influences of any one of these forces and weigh it
against the others, much less assert sweeping claims to its relative
importance. On the one hand, pure thought, the response to aes-
thetic and philosophical interests, has decisively fashioned the char-
acter of mathematics and made such unexcelled contributions as
Greek geometry and modern non-Euclidean geometry. On the other
hand, mathematicians reach their pinnacles of pure thought not by
lifting themselves by their bootstraps but by the power of social
forces. Were these forces not permitted to revitalize mathematicians,
they would soon exhaust themselves; thereafter they could merely
sustain their subject in an isolation which might be splendid for a
short time but which would soon spell intellectual collapse.

Another important characteristic of mathematics is its symbolic
language. Just as music uses symbolism for the representation and
communication of sounds, so mathematics expresses quantitative re-
lations and spatial forms symbolically. Unlike the usual language of
discourse, which is the product of custom, as well as of social and
political movements, the language of mathematics is carefully, pur-
posefully, and often ingeniously designed. By virtue of its compact-
ness, it permits the mind to carry and work with ideas which, ex-
pressed in ordinary language, would be unwieldy. This compactness
makes for efficiency of thought. Jerome K. Jerome’s need to resort
to algebraic symbolism, though for non-mathematical purposes, re-
veals clearly enough the usefulness and clarity inherent in this
device:

When a twelfth-century youth fell in love he did not take three paces
backward, gaze into her eyes, and tell her she was too beautiful to live.
He said he would step outside and see about it. And if, when he got out,
he met a man and broke his head—the other man’s head, I mean—then
that proved that his—the first fellow’s—girl was a pretty girl. But if the
other fellow broke kis head—not his own, you know, but the other fellow’s
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—the other fellow to the second fellow, that is, because of course the other
fellow would only be the other fellow to him, not the first fellow who—
well, if he broke his head, then his girl-not the other fellow’s, but the
fellow who was the— Look here, if A broke B’s head, then A’s girl was a
pretty girl; but if B broke A’s head, then A’s girl wasn't a pretty girl, but
B’s girl was.

While clever symbolism enables the mind to carry complicated ideas
with ease, it also makes it harder for the layman to follow or under-
stand a mathematical discussion.

The symbolism used in mathematical language is essential to dis-
tinguish meanings often confused in ordinary speech. For example,
the word is is used in English in many different senses. In the sen-
tence He is here, it indicates a physical location. In the sentence
An angel is white, it indicates a property of angels that has nothing
to do with location or physical existence. In the sentence The man
is running, the word gives the tense of the verb. In the sentence Two
and two are four, the form of is used denotes numerical equality.
In the sentence Men are the two-legged thinking mammals, the form
of is involved asserts the identity of two groups. Of course, for the
purposes of ordinary discourse it is superfluous to introduce differ-
ent words for all these meanings of is. No mistakes are made on
account of these ambiguities. But the exactions of mathematics, as
well as of the sciences and philosophy, compel workers in these fields
to be more careful.

Mathematical language is precise, so precise that it is often con-
fusing to people unaccustomed to its forms. If a mathematician
should say, ‘I did not see one person today,” he would mean that he
either saw none or saw many. The layman would mean simply that
he saw none. This precision of mathematics appears as pedantry or
stiltedness to one who does not yet appreciate that it is essential to
exact thinking, for exact thinking and exact language go hand in
hand.

Mathematical style aims at brevity and formal perfection. It some-
times succeeds too well and sacrifices the clarity its precision seeks
to guarantee. Let us suppose we wish to express in general terms
the fact illustrated in figure 1. We might be tempted to say: ‘We
have a right triangle. If we construct two squares each having an
arm of the triangle as a side and if we construct a square having the
hypotenuse of the triangle for its side, then the area of the third
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square is equal to the sum of the areas of the first two.” But no
mathematician would deign to express himself that way. He prefers:
‘The sum of the squares on the arms of a right triangle equals the
square on the hypotenuse.” This economy of words makes for deft-
ness of presentation, and mathematical writing is remarkable be-
cause 1t does encompass much in few words. Yet there are times
when any reader of mathematical literature finds his patience sorely
tried by what he would call a miserliness with ink and paper.

Figure 1. The Pythagorean theorem

Mathematics is more than a method, an art, and a language. It
is a body of knowledge with content that serves the physical and
social scientist, the philosopher, the logician, and the artist; content
that influences the doctrines of statesmen and theologians; content
that satisfies the curiosity of the man who surveys the heavens and
the man who muses on the sweetness of musical sounds; and con-
tent that has undeniably, if sometimes imperceptibly, shaped the
course of modern history.

Mathematics is a body of knowledge. But it contains no truths.
The contrary belief, namely, that mathematics is an unassailable
collection of truths, that it is like a final revelation from God such
as religionists believe the Bible to be, is a popular fallacy most diffi
cult to dislodge. Up to the year 1850, even mathematicians sub
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scribed to this fallacy. Fortunately, some events of the nineteenth
century, which we propose to discuss later, showed the mathemati-
cians the error of their ways. Not only is there no truth in the sub-
ject, but theorems in some branches contradict theorems in others.
For example, some of the theorems established in geometries created
during the last century contradict those proved by Euclid in his
development of geometry. Though devoid of truth, mathematics has
given man miraculous power over nature. The resolution of this
greatest paradox in human thought will be one of our major con-
cerns.

Because the twentieth century must distinguish mathematical
knowledge from truths it must also distinguish between mathe-
matics and science, for science does seek truths about the physical
world. Mathematics has indeed been a beacon light to the sciences
and has continually helped them in reaching the position they oc-
cupy in our present civilization. It is even correct to assert that
modern science triumphs by virtue of mathematics. Yet we shall see
that the two fields are distinct.

In its broadest aspect mathematics is a spirit, the spirit of rational-
ity. It is this spirit that challenges, stimulates, invigorates, and drives
human minds to exercise themselves to the fullest. It is this spirit
that seeks to influence decisively the physical, moral, and social life
of man, that secks to answer the problems posed by our very exist-
ence, that strives to understand and control nature, and that exerts
itself to explore and establish the deepest and utmost implications
of knowledge already obtained. To a large extent our concern in
this book will be with the operation of this spirit.

One more characteristic of mathematics is most pertinent to our
story. Mathematics is a living plant which has flourished and lan-
guished with the rise and fall of civilizations. Created in some pre-
historic period it struggled for existence through centuries of pre-
history and further centuries of recorded history. It finally secured
a firm grip on life in the highly congenial soil of Greece and waxed
strong for a brief period. In this period it produced one perfect
flower, Euclidean geometry. The buds of other flowers opened
slightly and with close inspection the outlines of trigonometry and
algebra could be discerned; but these flowers withered with the de-
cline of Greek civilization, and the plant remained dormant for one
thousand vears.
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Such was the state of mathematics when the plant was transported
to Europe proper and once more imbedded in fertile soil. By a.p.
1600 it had regained the vigor it had possessed at the very height
of the Greek period and was prepared to break forth with unprece-
dented brilliance. If we may describe the mathematics known
before 1600 as elementary mathematics, then we may state that ele-
mentary mathematics is infinitesimal compared to what has been
created since. In fact, a person possessed of the knowledge Newton
had at the height of his powers would not be considered a mathe-
matician today for, contrary to popular belief, mathematics must
now be said to begin with the calculus and not to end there. In our
century, the subject has attained such vast proportions that no
mathematician can claim to have mastered the whole of it.

This sketch of the life of mathematics, however brief, may never-
theless indicate that its vitality has been very much dependent on
the cultural life of the civilization which nourished it. In fact, mathe-
matics has been so much a part of civilizations and cultures that
many historians see mirrored in the mathematics of an age the char-
acteristics of the other chief works of that age. Consider, for ex-
ample, the classical period of Greek culture, which lasted from about
600 B.C. to 3oo B.C. In emphasizing the rigorous reasoning by which
they established their conclusions, the Greek mathematicians were
concerned not with guaranteeing applicability to practical problems
but with teaching men to reason abstractly and with preparing them
to contemplate the ideal and the beautiful. It should be no surprise
to learn, then, that this age has been unsurpassed in the beauty of
its literature, in the supremely rational quality of its philosophy,
and in the ideality of its sculpture and architecture.

It is also true that the absence of mathematical creations is indica-
tive of the culture of a civilization. Witness the case of the Romans.
In the history of mathematics the Romans appear once and then
only to retard its progress. Archimedes, the greatest Greek mathe-
matician and scientist, was killed in 211 B.c. by Roman soldiers who
burst in upon him while he was studying a geometrical diagram
drawn in sand. To Alfred North Whitehead,

The death of Archimedes by the hands of a Roman soldier is symbolical
of a world change of the first magnitude; the theoretical Greeks, with
their love of abstract science, were superseded in leadership of the Euro-
pean world by the practical Romans. Lord Beaconsfield, in one of his
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novels, has defined a practical man as a man who practices the errors of
his forefathers. The Romans were a great race, but they were cursed with
the sterility which waits upon practicality. They did not improve upon
the knowledge of their forefathers, and all their advances were confined
to the minor technical details of engineering. They were not dreamers
enough to arrive at new points of view, which could give a more funda-
mental control over the forces of Nature. No Roman lost his life because
he was absorbed in the contemplation of a mathematical diagram.

In fact, Gicero bragged that his countrymen, thank the gods, were
not dreamers, as were the Greeks, but applied their study of mathe-
matics to the useful.

Practical-minded Rome, which devoted its energies to adminis-
tration and conquest, symbolized best perhaps by the stolid if not
graceful arches under which victorious troops celebrated their home-
comings, produced little that was truly creative and original. In
short, Roman culture was derivative; most of the contributions made
during the period of Roman supremacy came from the Greeks of
Asia Minor, who were under the political domination of Rome.

These examples show us that the general character of an age is
intimately related to its mathematical activity. This relationship is
especially valid in our times. Without belittling the merits of our
historians, economists, philosophers, writers, poets, painters, and
statesmen, it is possible to say that other civilizations have produced
their equals in ability and accomplishments. On the other hand,
though Euclid and Archimedes were undoubtedly supreme thinkers
and though our mathematicians have been able to reach farther
only because, as Newton put it, they stood on the shoulders of such
giants, nevertheless, it is in our age that mathematics has attained
its range and extraordinary applicability. Gonsequently, present-day
Western civilization is distinguished from any other known to his-
tory by the extent to which mathematics has influenced contempo-
rary life and thought. Perhaps we shall come to see in the course of
this book how much the present age owes to mathematics.
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The Rule of Thumb in Mathematics

Do not imagine that mathematics is hard and crabbed and
repulsive to common sense. It is merely the etherealization

of common sense. LORD KELVIN

The cradle of mankind, as well as of Western culture, was the Near
East. While the more restless abandoned this birthplace to roam
the plains of Europe, their kinsmen remained behind to found
civilizations and cultures. Many centuries later the wise men of the
East had to assume the task of educating their still untutored rela-
tives. Of the knowledge which these sages imparted to Western man
the elements of mathematics were an integral part. Hence, to trace
the impress of mathematics on modern culture, we must turn to the
major Near Eastern civilizations.

We should mention in passing that simple mathematical steps were
made in primitive civilizations. Such steps were no doubt prompted
by purely practical needs. The barter of necessities, which takes place
in even the most primitive types of human society, requires some
counting.

Since the process of counting is facilitated by the use of the fingers
and toes, it is not surprising that primitive man, like a child, used
his fingers and toes as a tally to check off the things he counted.
Traces of this ancient way of counting are imbedded in our own
language, the word digit meaning not only the numbers 1, 2, 3 . . .
but a finger or a toe as well. The use of the fingers undoubtedly
accounts for the adoption of our system of counting in tens, hun-
dreds (tens of tens), thousands (tens of hundreds), and so forth.

Even primitive civilizations developed special symbols for num-
bers. In this way, these civilizations showed cognizance of the fact
that three sheep, three apples, and three arrows have much in com-

13
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mon, namely the quantity three. This appreciation of number as an
abstract idea, abstract in the sense that it does not have to relate to
particular physical objects, was one of the major advances in the
history of thought. Each of us in his own schooling goes through a
similar intellectual process of divorcing numbers from physical
objects.

Primitive civilizations also invented the four elementary opera-
tions of arithmetic, that is, addition, subtraction, multiplication, and
division. That these operations did not come readily to man can he
learned even from a study of contemporary backward peoples. When
sheep owners of many primitive tribes sell several animals, they will
not take a lump sum for the lot but must be paid for each one
separately. The alternative of multiplying the number of sheep by
the price per sheep confuses them and leaves them suspecting that
they have been cheated.

There is little question that geometry, like the number system,
was fostered in primitive civilizations to satisfy man’s needs. Funda-
mental geometric concepts came from observation of figures formed
by physical objects. It is likely that the concept of angle, for example,
first came from observation of the angles formed at the elbows and
knees. In many languages, including modern German, the word for
the side of an angle is the word for leg. We ourselves speak of the
arms of a right triangle.

The major Near Eastern civilizations from which our culture and
our mathematics sprang were the Egyptian and the Babylonian. In
the earliest records of these civilizations we find well-developed num-
ber systems, some algebra, and very simple geometry. For the num-
bers from 1 to 9 the Egyptians used simple strokes thus: 1, I, 111,
etc. For 10 they introduced the special symbol [V, and there were
special symbols for 100, 1000, and other large numbers. For interme-
diate numbers they combined these symbols in a very natural man-
ner. Thus 21 was written {1 V|

The Babylonian method of writing quantity deserves more atten-
tion. For 1 they wrote Y ; 2 was represented by YV ; 4, by Y 37 ;
and so forth up to nine. The symbol << was used for 10. Thus 33
was <C<CL Y YV . The number Y <C<C Y is especially significant.
Here the first Y meant not 1 but 60, and the whole group repre-
sented 60 + 10 + 10 + 1 or 81. Thus the same symbol represented
different values depending on its position in the number. The prin-
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ciple invloved here is that of place value and is precisely the one we
use today. In the number 69, the g represents g units but the &
means 6 times 10 and the § means j; times 100 or 5 times 10% In
other words, the position of a digit in the number determines the
value it represents, and this value is a multiple of 10, of the square
of 10, or of the cube of 10, and so on, depending on the position of
the digit. The number ten is called the base of our system.

Because the Babylonians introduced place value in connection
with the base sixty, the Greeks and Europeans used this system in all
mathematical and astronomical calculations until the sixteenth cen-
tury and it still survives in the division of angles and hours into 6o
minutes and 60 seconds. Base ten was developed by the Hindus and
introduced into Europe during the late Middle Ages.

The principle of place value is so important that it merits a bit
of discussion. Taken in conjunction with base ten, ten symbols suf-
fice to represent any quantity no matter how large. The representa-
tion 1s systematic and compact compared to other methods such as
the Egyptian. Even more important is the fact that the principle
permitted the development of our modern efficient methods of com-
putation.

We should notice too that it is not necessary to use ten as a base.
Any whole number would do as well in principle. Suppose, for ex-
ample, that a person were to use five. He would then need just five
symbols, say 1, 2, 8, 4, and o. To indicate the quantity five he would
write 10, the 1 this time meaning 1 times five, just as the 1 in the
familiar 10 means 1 times ten. To write six in the base five he would
write 11. Seven would be 12. Eleven would be 21. Twenty-five would
be 100 or 1 times j? 4 o times § + o units. To use the base five sys-
tematically he would of course have to learn the relevant addition
and multiplication tables. Thus g + 4 would be 12; 18 4 14, the
two numbers being in base five and representing eight and nine, re-
spectively, would be g2; and so on. The question, what is the best
base, has been seriously considered and there are good reasons to
favor twelve. Custom rules in favor of ten, however, as far as or-
dinary uses of numbers are concerned.

To use the principle of place value to best advantage a zero is
required, for there must be some way to distinguish 503, say, from
53. The Babylonians used a special symbol to separate the 5 and g
in the former case but failed to recognize that this symbol could also
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be treated as a number; that 1s, they failed to see that zero indicates
quantity and can be added, subtracted, and used generally like other
numbers. The number zero must be carefully distinguished from
the concept of nothing. A student’s grade in a mathematics course
is nothing if he never took that course. 7f, on the other hand, he did
take the course and his work was judged worthless, his grade would
be zero.

For early civilizations computation with fractions was not a
simple matter. The Babylonians lacked adequate notation. Thus
<C<C<Cmeant 3%,, as well as go; the correct value had to be under-
stood from the context. The Egyptians found it necessary to reduce
a fraction to a sum of fractions in each of which the numerator was
unity. Thus- they would express 54 as 14 + 14 before computing
with it. Though modern methods of handling fractions are much
more efficient they still give trouble to many adults.

The ancient civilizations of Babylonia and Egypt carried their
arithmetic beyond the use of integers and fractions. We know they
were able to solve some problems involving unknown quantities,
although by methods cruder and less general than we learn in our
secondary schools. Babylonia is, in fact, considered to be the source
of some of Euclid’s knowledge of algebra.

Whereas the Babylonians developed a superior arithmetic and
algebra, the Egyptians are generally considered to have surpassed
them in geometry. There is much speculation about why this was so.
One reason offered by historians is that the Egyptians never devel-
oped convenient methods of working with numbers, particularly
fractions, and consequently were prevented from going further in
the field of algebra. Instead they emphasized geometry. Another
view is that geometry is a ‘gift of the Nile.” Herodotus relates that
in the fourteenth century s.c. King Sesostris had so divided the land
among all Egyptians that each received a rectangle of the same size
and was taxed accordingly. If a man lost any of his land by the
annual overflow of the Nile, he had to report the loss to the Pharaoh
who would then send an overseer to measure the loss and make a
proportionate abatement of the tax. Thus from the soil of Egypt
the science of geometry—geo meaning earth, metron meaning meas-
ure—arose and flourished. Herodotus may have correctly selected the
reason for the emphasis on geometry in Egypt but seems to have
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overlooked its existence for millenniums preceding the fourteenth
century B.C.

Egyptian and Babylonian geometry was of the rule-of-thumb or
practical variety. Straight lines meant no more than stretched pieces
of cord; the Greek word ‘hypotenuse,’ in fact, means stretched
against,” presumably against the two arms of the right angle. A plane
was merely the surface of a piece of flat land. Their formulas for
volume of granaries and areas of land were arrived at by trial and
error. As a consequence, many of these formulas were definitely
faulty. For example, an Egyptian formula for the area of a circle
was 3.16 times the square of the radius. This is not correct though
close enough for the uses the Egyptians made of it.

The Egyptians and Babylonians made numerous practical appli-
cations of their mathematics. Their papyri and clay tablets show
promissory notes, letters of credit, mortgages, deferred payments,
and the proper apportionment of business profits. Although arith-
metic and algebra were used in such commercial transactions, geo-
metrical formulas produced the areas of fields and the amounts of
grain stored in cylindrical and pyramidal granaries. In addition, the
Babylonians and Egyptians were indefatigable builders. Even in this
age of skyscrapers their temples and pyramids appear to us to be
admirable engineering achievements. The Babylonians were also
highly skilled irrigation engineers. Through cleverly dug canals, the
Tigris and Euphrates Rivers, the life’s blood of these people, ferti-
lized the land and made possible in that dry, hot climate the support
of thriving and populous cities such as Ur and Babylon.

But it is a mistake—no matter how often it is repeated—to believe
that mathematics in Egypt and Babylonia was confined just to the
solution of practical problems. This belief is as false for those times
as it is for our own. Instead we find, upon closer investigation, that
the exact expression of man’s thoughts and emotions, whether artis-
tic, religious, scientific, or philosophical, involved then, as today,
some aspect of mathematics. In Babylonia and Egypt the association
of mathematics with painting, architecture, religion, and the in-
vestigation of nature was no less intimate and vital than its use in
commerce, agriculture, and construction.

Those writers who believe that mathematics possesses only utili-
tarian value often read into history a practical motivation for mathe-
matical activity that logically could not have existed. Their argu-
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ment runs like this: mathematics was applied to calendar reckoning
and navigation; hence the creation of mathematics was motivated
by these practical problems much as the need to count led to the
number system. This post hoc ergo propter hoc type of argument
has no history and very little probability in its favor. No mariner
lost at sea suddenly decided that the stars were the answer to his
navigation problem; nor did some Egyptian farmer, concerned about
the number of days until the annual flood of the Nile, decide that
he would thereafter watch the course of the sun.

Preceding the use of astronomy and of mathematics for naviga-
tion and calendar reckoning there must have been centuries during
which men filled with instinctive wonder and awe of nature, men
with irrepressible philosophical drives, patiently observed the move-
ment of the sun, moon, and stars. These seers, obsessed by the mys-
tery of nature, overcame the handicaps of lack of instruments and
woefully inadequate mathematics to distill from their observations
the patterns the heavenly bodies describe. These are the men who
very early in the Egyptian civilization learned that the solar year,
the year of the seasons, consists of about 865 days.

Their patience and persistence accomplished even more. They
observed that the star Sirius appeared in the sky at sunrise on that
day of the year when the annual flood of the Nile reached Cairo.
This observation must have been made for many years before it
was decided to chart Sirius’ path in the heavens in order to predict
the flood. More than that, since the calendar year of g65 days was a
quarter of a day short of the true solar year, after several years the
calendar no longer told when Sirius would appear in the sky at
dawn. Only after 1460 years, that is, 4 X 365, would the calendar
and the position of Sirius in the sky agree once more. This period
of 1460 years, called the Sothic cycle, was also known to the Egyptian
astronomers. Surely the existence of such regularities in the heavens
had to be recognized before anyone could think of applying them.

Once the astronomical and mathematical studies revealed these
regularities, the Babylonian and Egyptian learned to watch the face
of the sky. He hunted, fished, sowed, reaped, danced, and performed
religious ceremonies at the times the heavens dictated. Soon particu-
lar constellations received the names of the activities their appear-
ance sanctioned. Sagittarius, the hunter, and Pisces, the fish, are still
m the sky.
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The heavens decided the time of events. But such imperious mas-
ters would brook no tardiness in compliance with their orders. The
Egyptian, who made his living by tilling the soil which the Nile
covered with rich silt during its annual overfiow of the country, had
to be well prepared for the flood. His home, equipment, and cattle
had to be temporarily removed from the area, and arrangements
made for sowing immediately afterward. Hence the coming of the
flood had to be predicted. Not only in Egypt but in all lands it was
necessary to know beforehand the time for planting and the coming
of holidays and days of sacrifice.

Prediction was not possible, however, by merely keeping count
of the passing days and nights. For the calendar year of 365 days
soon lost all relation to the seasons just because it was short by a
quarter of a day. Prediction of a holiday or the Nile flood even a few
days in advance required an accurate knowledge of the motions of
the heavenly bodies and of mathematics that was possessed only by
the priests. These votaries, knowing the importance of the calendar
for the regulation of daily life and for provident preparation, capi-
talized on this knowledge to secure power over the uninformed
masses. In fact, it is believed that the Egyptian priests knew the
solar year, that is, the year of the seasons, to be 36514 days in length
but deliberately withheld this knowledge from the people. Knowing
also when the flood was due, the priests could pretend to bring it
about with their rites while making the poor farmer pay for the per-
formance. Knowledge of mathematics and science was power then
as it is today.

Though wonder about the heavens led to mathematics through
its respectable relation astronomy, religious mysticism, itself an ex-
pression of wonder about life, death, wind, rain, and the panorama
of nature, soon fastened on mathematics through its now disrepu-
table relation astrology. Of course, the importance of astrology in
ancient religions must not be judged by its discredited position to-
day. In almost all these religions, the heavenly hodies, the sun
especially, were gods who ruled over events on the Earth. The will
and plans of these gods might be fathomed by studying their activi-
ties, their regular comings and goings, the sudden visitations of
meteors, and the occasional eclipses of the sun and moon. It was as
natural for the ancient priests to work out formulas for the divina-
tion of the future based on the motions of the planets and star con-
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stellations as 1t is for the modern scientist to study and master nature
with his techniques.

Even if the heavenly bodies had not been gods, a scientifically
immature people would have had good reasons to associate the posi-
tions of the sun, moon, and stars with human affairs. The depend-
ence of crops upon the sun and upon weather in general, the mating
of animals at definite seasons of the year, the periodicity in women,
which even Aristotle and Galen believed to be controlled by the
action of the moon, and numerous other similar associations, all
lent strong credence to such a doctrine. To the Egyptians, in par-
ticular, the coming of the Nile flood on just the day that Sirius
appeared in the sky at sunrise meant one thing: Sirius caused the
flood.

Religious mysticism expressed itself directly de more geometrico
in the construction and orientation of beautiful temples and pyra-
mids. Every major Babylonian city built a ziggurat, a temple in the
form of a tower. This was an imposing edifice erected on top of a
succession of terraces, approached by broad flights of steps, and
clearlv visible for miles around. The Egyptian pyramids and temples
are, of course, well known. The pyramids in particular were con-
structed with special care because they were royal tombs, and the
Egyptians believed that construction according to exact mathemat-
ical prescriptions was essential for the future life of the dead. The
orientation of these religious structures in relation to the heavenly
bodies is well illustrated by the famous temple of Amon-Ra, the sun
god, at Karnak. The building faced the setting sun at the summer
solstice, and on that day the sun shone directly into the temple and
illuminated the rear wall.

Nor did religious mysticism overlook the intriguing properties of
numbers as a vehicle for expressing its ideas. The numbers three and
seven attracted special attention. Since the universe was evidently
constructed in a definite period of time, why not utilize a desirable
number like seven? That it should be a matter of days seemed a
good compromise between the power of God and the complexity of
nature.

The science of the cabala illustrates how far religionists were will-
ing to go to explain the mystery of the universe in terms of number.
Tradition credits the Babylonian priests with the invention of this
mystic and demoniac science of numbers, which the Hebrews later
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expanded. This pseudo-science was based on the following idea. Each
letter of the alphabet was associated with a number. In fact, the
Greeks and Hebrews used the letters of the alphabet as their num-
ber symbols. With each word was associated the number that was
the sum of the numbers attached to the letters spelling the word.
Two words having the same associated number were believed to be
related, and this connection was used to make predictions. Thus a
man’s death might be prophesied because the numbers attached to
the name of some enterprise he planned to undertake and to the
word death were the same.

Man’s artistic interests vied with his religious feelings to discover
and utilize mathematical knowledge. While the architects studied
and applied geometry to the design and construction of beautiful
public buildings, temples, and royal palaces, the painters were at-
tracted by geometrical figures as a means of expressing their con-
ceptions of beauty. Artists of the city of Susa, in Persia, used geomet-
rical forms six thousand years ago in a conventionalized artistic style
as sophisticated as that of modern abstract art. Goats, whose fore and
hind quarters were triangles and whose horns were sweeping semi-
circles, and storks, whose bodies and heads were drawn as large and
small triangles, decorated their pottery. Geometry was not, as Herod-
otus claimed, the gift of the Nile alone. The artists too presented this
gift to civilization.

The Egyptian and Babylonian civilizations drew inspiration for
mathematical activity from many human needs and interests, but
they fell short of greatness both in their understanding of mathe-
matics and in their actual contributions to the subject. They accu-
mulated simple formulas and numerous elementary rules and tech-
niques, all of which answered questions arising in particular situ-
ations. There was, however, no general development of a subject nor
do the texts enunciate any general principles. The Ahmes papyrus,
from which we derive most of our knowledge of Egyptian mathemat-
ics, merely works out specific problems; no explanations or reasons
for the operation are furnished. It has been suggested that the Baby-
lonian and Egyptian priests may have possessed general mathematical
principles and may have kept that knowledge secret. This is largely
speculation, supported partly by the title of the Ahmes papyrus:
Directions for Obtaining Knowledge of All Dark Things, and partly
by the general character of the Egyptian theocracy with its oral trans-
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mission of knowledge and its attempt to develop in the people a
reverence for the ruling class.

The failure to build a major scientific body of knowledge or to
encompass details in some broad synthesis is noticeable also in Egyp-
tian and Babylonian astronomy. During thousands of years of ob-
servation no theory was ever developed to correlate and illuminate
the observations.

Too much has been made of the mathematics used in the con-
struction of pyramids and temples as evidence of the profundity of
ancient mathematics. It is pointed out by some writers that the sides
of a pyramid are almost exactly the same length and that the right
angles are very close to go°. Not mathematics, however, but care and
patience were required to obtain such results. Accurate computers
are not necessarily great mathematicians and neither were the pyra-
mid builders. What is amazing about their work was the organization
and engineering of such large-scale efforts.

From the modern point of view Egyptian and Babylonian math-
ematics was defective in another very important respect: the con-
clusions were established empirically. It will profit us shortly if we
examine the method by which the Egyptian and Babylonian ac-
quired his formulas.

Suppose a farmer wished to enclose 100 square feet of area as
cheaply as possible and desired to have the area rectangular in shape.
To keep the cost of fencing low he would want the perimeter to be
as small as possible. Now he can lay out a rectangle with 100 square
feet of area by using dimensions such as 50 by 2 feet, 20 by 5 feet,
8 by 1214 feet, and many other combinations. The perimeters of
these various rectangles, however, are not the same despite the fact
that the areas are all 100 square feet. For example, the dimensions
2 by 50 require a perimeter of 104 feet; the dimensions 5 by 20 re-
quire a perimeter of only ro feet; and so forth. From our few calcu-
lations we can readily see that the differences in perimeter for dif-
ferent dimensions can be considerable.

Now the farmer is in a plight. If he knows some arithmetic he
can try various dimensions which yield an area of 100 square feet
and take those which yield the smallest perimeter. But since the pos-
sibilities are infinite he can never try all of them; hence he cannot
determine the best choice. An alert farmer might notice that the
more nearly equal the two dimensions are the smaller the perimeter
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required. He might suspect, then, that the square with dimensions
10 feet by 10 feet requires the smallest perimeter. But he could not
be sure. His trial-and-error procedure, however, has led to a likely
conclusion, namely, that of all rectangles with a given area, the
square has the least perimeter.

The farmer would no doubt use this conjecture and, because
arithmetic and continued experience with rectangular areas support
this conclusion, it would be handed down to posterity as a reliable
mathematical fact. Of course, the conclusion is by no means estab-
lished and no modern mathematics student would be permitted to
‘prove’ it in this manner. About the best that can be said for this
ancient approach to mathematical knowledge is that it substitutes
patience for brilliance.

One other aspect of the mathematics of ancient times deserves our
attention. The priests monopolized all learning, mathematics in-
cluded, in order to use it for their own ends. Knowledge gave them
power; and by restricting knowledge they reduced the likelihood that
anyone would be able to challenge that power. Moreover, ignorance
begets fear and people who are afraid turn to leaders who will guide
and reassure them. In this way, the priests reinforced their position
and were able to maintain their rule over the people. The theocra-
cies of Babylonia and Egypt compare very unfavorably with civil-
izations in which there was no dominant priestly class. We shall see
that the few hundred years during which the Greeks flourished and
the last few hundred years of our modern era produced infinitely
more knowledge and progress than the millenniums of the two an-
cient civilizations.
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The Birth of the Mathematical Spirit

Whatever we Greeks receive, we improve and perfect.

PLATO

There is a story told of Thales that once during an evening walk
he became absorbed in observation of the stars and fell into a ditch.
A woman accompanying him exclaimed, ‘How canst thou know what
is doing in the heavens, when thou seest not what is at thy feet?’
Thales, however, did do many things simultaneously and success-
fully. During one lifetime he not only founded Greek mathematics,
observed the stars, and took nature walks with congenial companions,
but also fathered Greek philosophy, contributed a major cosmolog-
ical theory, traveled extensively, made notable contributions to as-
tronomy, and realized enormous success in business.

Thales, along with most of the early Greek mathematicians, learned
the elements of algebra and geometry from the Egyptians and the
Babylonians. In fact, many of these scholars came from Asia Minor,
which inherited the Babylonian culture. Others, born on the Greek
mainland, went to Egypt and studied there. Despite the unquestioned
influence of Egypt and Babylonia on Greek minds, the mathematics
produced by the Greeks differed radically from that which preceded
it. Indeed, from the point of view of the twentieth century, math-
ematics and, it may well be added, modern civilization began with
the Greeks of the classical period, which lasted from about 600 to
300 B.C.

The mathematics that existed before Greek times has already been
characterized as a collection of empirical conclusions. Its formulas
were the accretion of ages of experiénce much as many medical prac-
tices and remedies are today. Though experience is no doubt a good
teacher, in many situations it would be a most inefficient way of

24
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obtaining knowledge. Who would erect a mile-long bridge to deter-
mine whether a particular steel cable could support it? The method
of trial and error may be direct but it may also be disastrous.

Is experience the only way of obtaining knowledge?r Not for beings
endowed with a reasoning faculty. Reasoning can follow many routes,
among which is the commonly traveled one of analogy. The Egyp-
tians, for example, believed in immortality and so they buried their
dead with clothes, utensils, jewelry, and other things that might be
of use in the next world. Their reasoning was that since life on Earth
required these articles, the after-life would also.

Reasoning by analogy is useful, but it also has its limitations.
There may not be an analogous situation at all; airplanes, radios,
and submarines could hardly have been invented by reasoning by
analogy. Or, there may be an analogous situation that differs slightly
but enough to matter a great deal. Though human beings resemble
apes, some conclusions about humans cannot be drawn from a study
of the apes.

A more commonly used method of reasoning is known as induc-
‘tion. A farmer may observe that heavy rains during several successive
springs were followed by excellent crops. He concludes that heavy
rains are beneficial to crops. Again, because a person may have had
unfortunate experiences in dealing with lawyers, he concludes that
all lawyers are undesirable people. Essentially, the inductive process
consists in concluding that something is always true on the basis of
a limited number of instances.

Induction is the fundamental method of reasoning in experimental
science. Suppose a scientist heats a given quantity of water from 40°
to 70° and sees that the volume occupied by the water increases. If
he is a good scientist, he will draw no conclusion as yet but will re-
peat the experiment many times. Let us suppose that he observes the
same expansion each time. He will then declare that water expands
as it is heated from 40° to %0°. This conclusion is obtained by in
ductive reasoning.

Though the conclusions obtained by inductive reasoning seem
warranted by the facts, they are not established beyond all doubt.
Logically these conclusions are not any better established than the
generalization drawn from the observation of four hundred million
Chinese that all human beings are yellow-skinned. In other words,
we cannot be certain of any conclusion obtained by inductive reason-
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ing. There are other limitations to this type of reasoning. We cannot
conclude inductively what the effect on society of an untried law may
be. Nor can we conclude inductively, as one uncritical observer did,
that all Indians walk single file by seeing one do so!

The several methods of obtaining conclusions, each undoubtedly
useful in a variety of situations, possess 4 common limitation: even
if the facts of experience, or the facts on which reasoning by analogy
or induction are based, are entirely correct, the conclusion obtained
is not certain, and where certainty is vital these methods are prac-
tically useless.

Fortunately, there is a method of reasoning that does guarantee
the certainty of the conclusions it produces. The method is known
as deduction. Let us consider some examples. If we accept the facts
that all apples are perishable and that the object before us is an
apple, we must conclude that this object is perishable. As another
example, if all good people are charitable and if I am good, then I
must be charitable. And if I am not charitable I am not good. Again,
we may argue deductively from the premises that all poets are intel-
ligent and that no intelligent people deride mathematics, to the in-
evitable conclusion that no poet derides mathematics.

It does not matter, in so far as the reasoning is concerned, whether
we agree with the premises. What is pertinent is that if we accept
the premises we must accept the conclusion. Unfortunately, many
people confuse the acceptability or truth of a conclusion with the
validity of the rcasoning that leads to this conclusion. From the
premises that all intelligent beings are humans and that readers of
this book are human beings, we might conclude that all readers of
this book are intelligent. The conclusion is undoubtedly true but
the purported deductive reasoning is invalid because the conclusion
does not necessarily follow from the premises. A moment’s reflection
shows that even though all intelligent beings are humans there may
be human beings who are not intelligent, and nothing in the premises
tells us to which group of human beings the readers of this book
belong.

Deductive reasoning, then, consists of those ways of deriving new
statements from accepied facts that compel the acceptance of the
derived statements. We shall not pursue at this point the question
of why it is that we experience this mental conviction. What is im-
portant now is that man has this method of arriving at new conclu-
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sions and that these conclusions are unquestionable if the facts we
start with are also unquestionable.

Deduction, as a method of obtaining conclusions, has many advan-
tages over trial and error or reasoning by induction and analogy. The
outstanding advantage is the one we have already mentioned, namely,
that the conclusions are unquestionable if the premises are. Truth,
if it can be obtained at all, must come from certainties and not from
doubtful or approximate inferences. Second, in contrast to experi-
mentation, deduction can be carried on without the use or loss of
expensive equipment. Before the bridge is built and before the long-
range gun is fired, deductive reasoning can be applied to decide the
outcome. Sometimes deduction has the advantage of being the only
available method. The calculation of astronomical distances cannot
be carried out by applying a yardstick. Moreover, whereas exper-
ience confines us to tiny portions of time and space, deductive reason-
ing may range over countless universes and aeons.

With all of its advantages, deductive reasoning does not supersede
experience, induction, or reasoning by analogy. It is true that 100
per cent certainty can be attached to the conclusions of deduction
when the premises can be vouched for 100 per cent. But such un-
questionable premises are not necessarily available. No one, unfor-
tunately, has been able to vouchsafe the premises from which a cure
for cancer could be deduced. For practical purposes, moreover, the
certainty deduction grants is sometimes superfluous. A high degree
of probability may suffice. For centuries the Egyptians used math-
ematical formulas drawn from experience. Had they waited for de-
ductive proof the pyramids at Giza would not be squatting in the
desert today.

Each of these various ways of obtaining knowledge, then, has its
advantages and disadvantages. Despite this fact, the Greeks insisted
that all mathematical conclusions be established only by deductive
reasoning. By their insistence on this method, the Greeks were dis-
carding all rules, formulas, and procedures that had been obtained
by experience, induction, or any other non-deductive method and
that had been accepted in the body of mathematics for thousands
of years preceding their civilization. It would seem, then, that the
Greeks were destroying rather than building; but let us withhold
judgment for the present.
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Why did the Greeks insist on the exclusive use of deductive proof
in mathematics? Why abandon such expedient and fruitful ways of
obtaining knowledge as induction, experience, and analogy? The
answer can be found in the nature of their mentality and society.

The Greeks were gifted philosophers. Their love of reason and their
delight in mental activity distinguished them from other peoples.
The educated Athenians were as much devoted to philosophy as our
stnart-set is to night-clubbing; and pre-Christian fifth-century Athens
was as deeply concerned with the problems of life and death, immor-
tality, the nature of the soul, and the distinction between good and
evil as twentieth-century America is with material progress. Philos-
ophers do not reason, as do scientists, on the basis of personally con-
ducted experimentation or observation. Rather their reasoning cen-
ters about abstract concepts and broad generalizations. It is difficult,
after all, to experiment with souls in order to arrive at truths about
them. The natural tool of philosophers is deductive reasoning, and
hence the Greeks gave preference to this method when they turned
to mathematics.

Philosophers are, moreover, concerned with truths, the few, im-
material wisps of eternity that can be sifted from the bewildering
maze of experiences, observations, and sensations. Certainty is the
indispensable element of truth. To the Greeks, therefore, the math-
ematical knowledge accumulated by the Egyptians and Babylonians
was a house of sand. It crumbled to the touch. The Greeks sought
a palace built of ageless, indestructible marble.

The Greek preference for deduction was, surprisingly, a facet of
the Hellenic love for beauty. Just as the music lover hears music as
structure, interval, and counterpoint, so the Greek saw beauty as
order, consistency, completeness, and definiteness. Beauty was an in-
tellectual as well as an emotional experience. Indeed, the Greek
sought the rational element in every emotional experience. In a
famous eulogy Pericles praises the Athenians who died in battle at
Samos not merely because they were courageous and patriotic, but
because reason sanctioned their deeds. To people who identified
beauty and reason, deductive arguments naturally appealed because
they are planned, consistent, and complete, while conviction in the
conclusions offers the beauty of truth. It is no wonder, then, that the
Greeks regarded mathematics as an art, as architecture is an art
though its principles may be used to build warehouses.
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Another explanation of the Greek preference for deduction is
found in the organization of their society. The philosophers, math-
ematicians, and artists were members of the highest social class. This
upper stratum either completely disdained commercial pursuits and
manual work or regarded them as unfortunate necessities. Work in-
jured the body and took time from intellectual and social activities
and the duties of citizenship.

Famous Greeks spoke out unequivocally about their disdain of
work and business. The Pythagoreans, an influential school of phi-
losophers and religionists we shall soon meet, boasted that they had
raised arithmetic, the tool of commerce, above the needs of mer-
chants. They sought knowledge, not wealth. Arithmetic, said Plato,
should be pursued for knowledge and not for trade. Moreover, he
declared the trade of a shopkeeper to be a degradation for a freeman
and wished the pursuit of it to be punished as a crime. Aristotle
declared that in a perfect state no citizen should practice any me-
chanical art. Even Archimedes, who contributed extraordinary prac-
tical inventions, cherished his discoveries in pure science and con-
sidered every kind of skill connected with daily needs ignoble and
vulgar. Among the Boeotians there was a very decided contempt for
work. Those who defiled themselves with commerce were excluded
from state office for ten years.

The Greek attitude toward work might have had little influence
on their culture were it not for the fact that they did possess a large
slave class to whom they could ‘pass the buck.” Slaves ran the bus-
inesses and the households, did unskilled and technical work, man-
aged the industries, and practiced even the most important profes-
sions such as medicine. The slave basis of classical Greek society
fostered a divorce of theory from practice and the development of
the speculative and abstract side of science and mathematics with a
consequent neglect of experimentation and practical applications.

In view of the eschewal of commerce and trade by the Greek upper
class—certainly a contrast to the preoccupation of our highest social
class with finance and industry—it is not hard to understand the pref-
erence for deduction. If a person does not ‘live’ in the world about
him, experience teaches him very little. Similarly, in order to reason
inductively or by analogy he must be willing to go about and observe
the real world. Experimentation would certainly be alien to thinkers
who frowned upon the use of the hands. Since the Greeks were not
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idlers they fell quite naturally into the mode of inquiry that suited
their tastes and social attitudes.

Jonathan Swift observed and ridiculed this isolation of Greek cul-
ture, as well as its influence on the abstract nature of what he be-
lieved to be the pseudo-science of his own day. When Gulliver is led
on a tour of inspection of Laputa, he observes:

Their houses are very ill built, the walls bevil, without one right angle
in any apartment, and this defect ariseth from the contempt they bear to
practical geometry, which they despise as vulgar and mechanic, those in-
structions they give being too refined for the intellectuals of their work-
men, which occasions perpetual mistakes. And although they are dex-
terous enough upon a piece of paper in the management of the rule, the
pencil, and the divider, yet in the common actions and behaviour of life,
I have never seen a more clumsy, awkward, and unhandy people, nor so
slow and perplexed in their conceptions upon all other subjects, except
those of mathematics and music.

Nevertheless, Greek insistence on deductive reasoning as the sole
method of proof in mathematics was a contribution of the first mag-
nitude. It removed mathematics from the carpenter’s tool box, the
farmer’s shed, and the surveyor’s kit, and installed it as a system of
thought in man’s mind. Man’s reason, not his senses, was to decide
thenceforth what was correct. By this very decision reason effected
an entrance into Western civilization, and thus the Greeks revealed
more clearly than in any other manner the supreme importance they
attached to the rational powers of man.

The exclusive use of deduction has, moreover, been the source of
the surprising power of mathematics and has differentiated that sub-
ject from all other fields of knowledge. In particular, therein lies
one sharp distinction between mathematics and science, for science
also uses conclusions obtained by experimentation and induction.
Consequently, the conclusions of science occasionally need revision
and sometimes must be thrown overboard entirely, whereas the con-
clusions of mathematics have stood for thousands of years even
though the reasoning in some cases has had to be supplemented.

Had the Greeks done no more to the character of mathematics
than to convert it from an empirical science into a deductive system
of thought their influence on history would still have been enormous.
But their contributions only began there.

A second vital contribution of the Greeks consisted in their having
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made mathematics abstract. Earlier civilizations learned to think
about numbers and operations with numbers somewhat abstractly,
but only in the unconscious manner in which we as children learned
to think about and manipulate them. Geometrical thinking, before
Greek times, was even less advanced. To the Egyptians, for example,
a straight line was quite literally no more than either a stretched rope
or a line traced in sand. A rectangle was a fence bounding a field.

With the Greeks not only was the concept of number consciously
recognized but also they developed arithmetica, the higher arith-
metic or theory of numbers; at the same time mere computation,
which they called logistica and which involved hardly any appre-
ciation of abstractions, was deprecated as a skill in much the same
way as we look down upon typing today. Similarly in geometry, the
words point, line, triangle, and the like became mental concepts
merely suggested by physical objects but differing from them as the
concept of wealth differs from land, buildings, and jewelry and as
the concept of time differs from a measure of the passage of the sun
across the sky.

The Greeks eliminated the physical substance from mathematical
concepts and left mere husks. They removed the Cheshire cat and
left the grin. Why did they do it? Surely it is far more difficult to
think about abstractions than about concrete things. One advantage
is immediately apparent—the gain in generality. A theorem proved
about the abstract triangle applies to the figure formed by three
match sticks, the triangular boundary of a piece of land, and the
triangle formed by the Earth, sun, and moon at any instant.

The Greeks preferred the abstract concept because it was, to them,
permanent, ideal, and perfect whereas physical objects are short-
lived, imperfect, and corruptible. The physical world was unimpor.
tant except in so far as it suggested an ideal one; man was more
important than men. The strong preference for abstractions will be
evident from a brief glance at the leading doctrine of Greece’s greatest
philosopher.

Plato was born in Athens about 428 B.c. of a distinguished and
active Greek family, at a time when that city was at the height of
her power. While still a youth he met Socrates and later supported
him in the defense of the aristocracy’s leadership of Athens. When
the democratic party took power, Socrates was sentenced to drink
poison and Plato became persona non grata in Athens. Convinced
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that there was no place in politics for a man of conscience—of course,
politics was different in those days—he decided to leave the city. After
traveling extensively in Egypt and visiting the Pythagoreans in lower
Italy, he returned to Athens about 384 B.Cc. where he founded his
academy for philosophy and scientific research. Plato devoted the
latter forty of his eighty years of life to teaching, writing, and the
making of mathematicians. His pupils, friends, and followers were
the greatest men of his age and of many succeeding generations, and
among them could be found every noteworthy mathematician of the
fourth century B.c.

There is, Plato maintained, the world of matter, the Earth and
the objects on it, which we perceive through our senses. There is also
the world of spirit, of divine manifestations, and of ideas such as
Beauty, Justice, Intelligence, Goodness, Perfection, and the State.
These abstractions were to Plato as the Godhead is to the mystic,
the Nirvana to the Buddhist, and the spirit of God to the Christian.
Whereas our senses grasp the passing and the concrete, only the mind
can attain the contemplation of these eternal ideas. It is the duty of
every intelligent man to use his mind toward this end, for these ideas
alone, and not the daily affairs of man, are worthy of attention. These
idealizations, which are the core of Plato’s philosophy, are on exactly
the same mental level as the abstract concepts of mathematics. To
learn how to think about the one is to learn how to think about the
other. Plato seized upon this relationship.

In order to pass from a knowledge of the world of matter to the
world of ideas, he said, man must prepare himself. Light from the
highest realities, which reside in the divine sphere, blinds the person
who is not trained to face it. He is, to use Plato’s own famous figure,
like one who lives continually in the deep shadows of a cave and is
suddenly brought out into the sunlight. To make the transition from
darkness to light, mathematics is the ideal means. On the one hand,
it belongs to the world of the senses, for mathematical knowledge
pertains to objects on this Earth. It is, after all, the representation
of properties of matter. On the other hand, considered solely as ideal-
ization, solely as an intellectual pursuit, mathematics is indeed dis-
tinct from the physical objects it describes. Moreover, in the making
of proofs, physical meanings must be shut out. Hence mathematical
thinking prepares the mind to consider higher forms of thought. It
purifies the mind by drawing it away from the contemplation of the
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sensible and perishable to the eternal. The path to salvation, then,
to the understanding of Truth, Beauty, and Goodness, led through
mathematics. This study was an initiation into the Mind of God. In
Plato’s words, . . . geometry will draw the soul towards truth, and
create the spirit of philosophy, . . .” For geometry is concerned not
with material things but with points, lines, triangles, squares, and
so on, as objects of pure thought.

Arithmetic, too, said Plato, ‘has a very great and elevating effect,
compelling the soul to reason about abstract numbers, and rebelling
against the introduction of visible or tangible objects into the argu-
ment.” He advised ‘the principal men of our State to go and learn
arithmetic, not as amateurs, but they must carry on the study until
they see the nature of numbers with the mind only.’

To sum up Plato’s position: a modicum of geometry and calcula-
tion suffice for practical needs; however, the higher and more ad-
vanced portions tend to lift the mind above mundane considerations
and enable it to apprehend the final aim of philosophy, the idea of
the Good. For this reason Plato recommended that the future philos-
opher-kings be trained for ten years, from the age of twenty to the
age of thirty, in the study of the exact sciences: arithmetic, plane
geometry, solid geometry, astronomy, and harmonics. In his stress on
mathematics as a preparation for philosophy, Plato spoke not merely
for his followers and for his generation but for the whole classical
Greek age.

The Greek preference for idealizations and abstractions expressed
itself in philosophy and mathematics. It showed itself just as clearly
in art. Greek sculpture of the classical period dwelt not on particular
men and women but on ideal types (plates 1 and 11). This idealization
extended to standardization of the ratios of the parts of the body to
each other. No finger or toenail was overlooked in Polyclitus’ pre-
scriptions of these ratios. The modern practice in beauty contests of
awarding the prize to the girl whose measurements most closely ap-
proximate an established standard is a continuation of the Greek
interest in an ideal figure.

The faces and postures of the classical Greek draped and undraped
figures, at least until the decadent ‘Laocodn,” show no emotion or
concern. Judged by their facial expressions the Greek gods and the
Greek people neither thought, nor laughed, nor worried. Their de-
meanor is calm even in pieces of sculpture depicting dramatic action.
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The faces are as serene as we could expect those of man in the ab-
stract to be. Particular emotions are, after all, a matter of the mo-
ment, whereas these sculptors were depicting the eternal in the na-
ture of man. This epic style of sculpture contrasts sharply with what
is found in the numerous busts and statues of military and political
leaders done in the Roman period (plate mr).

The Greeks standardized their architecture as they did their sculp-
ture. Their simple and austere buildings were always rectangular in
shape; even the ratios of the dimensions were fixed. The Parthenon
at Athens (plate 1v) is an example of the style and proportions found
in almost all Greek temples, The insistence on ideal dimensions is,
incidentally, closely related to the Greek insistence on form, form
in the abstract, a concept not alien to our day, in which art and ab-
straction are practically synonymous.

The insistence on deductive and abstract mathematics created the
subject as we know it. Both of these characteristics were imparted
by philosophers. Despite the fact that mathematics was born of Greek
philosophy, many great mathematicians and some of the not so great
have been extremely scornful of all philosophic speculation. Of
course this attitude is no more than an expression of narrowness.
These mathematicians are in their chosen field like mighty rivers
that wear down mountains to reach the sea but whose paths are then
confined to narrow gorges. Their power has enabled them to pen-
etrate deeply below the surfaces they started to explore but has also
enclosed and entrapped them in high walls over which they can no
longer see. These disdainful mathematicians overlook the fact that
the deepest and mightiest rivers are continually fed by tenuous,
vaguely defined clouds. So, too, do the clouds of philosophic thought
distill their essence into mathematical streams.

The Greeks put their stamp on mathematics in still another way
that has had a marked effect on its development, namely, by their
emphasis on geometry. Plane and solid geometry were thoroughly
explored. A convenient method of representing quantities, however,
was never developed nor were efficient methods of reckoning with
numbers. Indeed, in computational work they even failed to utilize
techniques the Babylonians had created. Algebra in our present sense
of a highly efficient symbolism and numerous established procedures
for the solution of problems was not even envisioned. So marked was
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this disparity of emphasis that we are impelled to seek the reasons
for it. There are several.

We mentioned earlier that in the classical period industry, com-
merce, and finance were conducted by slaves. Hence the educated
people, who might have produced new ideas and new methods for
handling numbers, did not concern themselves with such problems.
Why worry about the use of numbers in measurement if one doesn’t
measure, or in trading if one dislikes trade? Nor do philosophers
need the numerical dimensions of even one rectangle to speculate
about the properties of all rectangles.

Like most philosophers the Greeks were star-gazers. They studied
the heavens to penetrate the mysteries of the universe. But the use
of astronomy in navigation and calendar reckoning hardly concerned
the Greeks of the classical period. For their purposes, shapes and
forms were more relevant than measurements and calculations, and
so geometry was favored. Of these forms, the circle and sphere, sug-
gested of course by superficial observation of the sun, moon, and
planets, received the major share of attention. Hence their astronom-
ical interests, too, led the classical Greeks to favor geometry.

The twentieth century secks reality by breaking matter down—
witness our atomic theories. The Greeks preferred to build matter
up. For Aristotle and other Greek philosophers the form of an object
is the reality to be found in it. Matter as such is primitive and shape-
less; it is significant only when it has shape. It is no wonder, then,
that geometry, the study of forms, was the special concern of the
Greeks.

Finally, it was the solution of a vital mathematical problem that
drove the Greek mathematicians into the camp of the geometers. We
have already spoken of the fact that the Babylonian civilization, as
well .as earlier ones, used integers and fractions. The Babylonians
were familiar also with a third type of number which arose through
the application of a theorem on right triangles.

First, let us examine the theorem. If a right triangle has arms of
lengths g and 4, the hypotenuse, or side opposite the right angle (4B
in fig. 2) has length 5. Now the square of 5, namely 25, is the sum
of the squares of g and 4, i.e., 52 = 3% 4 42 This relationship among
the sides of a right triangle, that is, that the square of the length of
the hypotenuse is equal to the sum of the squares of the lengths of
the other two sides, is commonly known as the Pythagorean theorem.
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To the Babylonians and Egyptians the fact, if not a proof, of this
relationship was known.

Suppose now that the arms of a right triangle both have length 1
(fig. 3). What would be the length of the hypotenuse? Let us call the
hypotenuse x. Then according to the Pythagorean theorem its length
must be such that

x?2 =124 12 =g,

Hence x, the length of the hypotenuse, must be a number whose
square is 2. We indicate the number whose square is 2 by V2 and
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Figures 2 and 3. Two right triangles

call it the square root of 2. But what number equals v/2? That is,
what number multiplied by itself gives 2?

The answer, as the Pythagorean school of mathematicians discov-
ered to its great dismay, is that there is no whole number or fraction
whose square is 2. /2 is a new kind of number, and they called it
irrational because it could not be expressed exactly as a ratio of whole
numbers, as 4/3 or 3/2. By contrast, whole numbers and fractions
are called rational numbers. These terms are in use today.

The irrational number is a much neglected topic in the history
of thought and a troublesome member of our number system. We
have just seen that such numbers must be used in order to represent
lengths and they are, moreover, explicitly and implicitly involved
in almost all of mathematics. Yet how can we add, subtract, multiply,
or divide such numbers? For example, how can we add 2 and v/2?
How do we divide V7 by v/2?

The Babylonians had a makeshift, though practical, solution of
these difficulties. They approximated the value of /2. For example,
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since the square of 14/10 or 1.4 is 1.96, and since 1.96 is nearly equal
to 2, 1.4 must be nearly equal to V2. An even better approximation
to V% is 1.41 because the square of 1.41 is 1.988.

The Babylonian approximation to /2 does not permit exact rea-
soning with irrational numbers, for no matter how many decimal
places we are willing to use we cannot write a rational number whose
square is exactly 2. Yet, if mathematics is to merit its claim to being
an exact study, it must evolve a method of working with /2 itself
and not an approximation of it. To the Greek mind, this difficulty
was as genuine and as prepossessing as the problem of food to a cast-
away on a coral reef.

Not content to use the less scrupulous method of the Babylonians,
the Greeks undertook to face the logical difficulty squarely. In order
to think about irrational numbers with exactness they conceived the
idea of working with all numbers geometrically. They started out
this way. A length was chosen to represent the number 1. Other num-
bers were then represented in terms of this length. To represent v/,
for example, they used a length equal to the hypotenuse of a right
triangle whose sides were one unit in length. The sum of 1 and V2
was a length formed by adjoining a unit segment to the length repre-
senting V2. In this geometrical form the sum of a whole number
and an irrational one is no more difficult to conceive than the sum
of one and one.

Similarly the product of two numbers, § and g for example, was
expressed geometrically as the area of the rectangle with dimensions
3 and 5. In the case of g and 5 the use of area as a way of thinking
about the product may be no great advantage. But one can also think
of the product of g and V2 as an area. To think about this second
rectangle is no more difficult than to think of the first one; yet it
provides an exact way of working with the product of an integer and
an irrational number or, for that matter, two irrational numbers.

The Greeks not only operated with numbers in the geometric
manner but went so far as to solve equations involving unknowns
by series of geometrical constructions. The answers to these construc-
tions were line segments whose lengths were the unknown values.
The thoroughness of their conversion to geometry may be judged
from the fact that the product of four numbers was unthinkable in
classical Greece because there was no geometric figure to represent
it in the manner that area and volume represented the product of
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two and three numbers respectively. Incidentally, we still speak of
a number such as 25 as the square of 5 and of 27 as the cube of g
in conformity with Greek thought.

The preference of the Greeks for geometry was so marked that
during his travel in Laputa, Gulliver was again forced to comment:

The knowledge I had in mathematics gave me great assistance in ac-
quiring their phraseology, which depended much upon that science and
music; and in the latter I was not unskilled. Their ideas are perpetually
conversant in lines and figures. If they would, for example, praise the
beauty of a woman, or any other animal, they describe it by rhombs,
circles, parallelograms, ellipses, and other geometrical terms, or by words
of art drawn from music, needless here to repeat. I observed in the King’s
kitchen all sorts of mathematical and musical instruments, after the fig-
ures of which they cut up the joints that were served to his Majesty’s table.

Because the Greeks converted arithmetical ideas into geometrical
ones and because they devoted themselves to the study of geometry,
that subject dominated mathematics until the nineteenth century,
when the difficulties in treating irrational numbers on an exact,
purely arithmetical basis were finally resolved. In view of the clumsi-
ness and complexity of arithmetical operations geometrically per-
formed, this conversion was, from a practical standpoint, a highly
anfortunate one. The Greeks not only failed to develop the number
system and algebra which industry, commerce, finance, and science
must have, but they also hindered the progress of later generations
by influencing them to adopt the more awkward geometrical ap-
proach. Furopeans became so habituated to Greek forms and fashions
that Western civilization had to wait for the Arabs to bring a number
system from far-off India.

Unfortunate as this Greek perversion of the number system and
of algebra may appear to us with our understanding of progress, it
still should not invoke on Greek heads the condemnation that has
sometimes been heaped there. The one backward step the Greeks
took was in itself thoroughly reasonable; moreover, the damage done
is heavily outweighed by the incomparable good of their other ac-
complishments.

When most people describe the Greek contributions to modern
civilization, they talk in terms of art, philosophy, and literature. No
doubt the Greeks deserve the highest praise for what they bequeathed
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to us in these fields. Greek philosophy is as alive and significant
today as it was then. Greek architecture and sculpture, especially the
latter, are more beautiful to the average educated person of the twen-
tieth century than the creations of his own age. Greek plays still
appear on Broadway. Nevertheless, the contribution of the Greeks
that did most to determine the character of present-day civilization
was their mathematics. By altering the nature of the subject in the
manner we have related, they were able to proffer their supreme gift.
This we proceed to examine.
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The Elements of Euclid

Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away
Have heard her massive sandal set on stone.

EDNA ST. VINCENT MILLAY

In a relatively brief period great intellects such as Thales, Pythagoras,
Eudoxus, Fuclid, and Apollonius produced an amazing amount of
first-class mathematics. The fame of these men spread to all corners
of the Mediterranean world and attracted numerous pupils. Masters
and pupils gathered in schools which, though they had few buildings
and no campus, were truly centers of learning. The teachings of these
schools dominated the entire intellectual life of the Greeks and, there-
fore, we shall refer to them in several different connections.

The Pythagorean school was the most influential in determining
both the nature and contents of Greek mathematics. Its leader, the
legend-veiled Pythagoras, was born on the island of Samos about
569 B.c. Through extensive travel in Egypt and India he absorbed
much of mathematics and mysticism. He then founded in Croton, a
Greek colony of Southern Italy, a community which embraced both
mystical and rational doctrines. On the mystical side the group drew
inspiration from Greek religion and considered it necessary to purify
the soul from the taint of the physical and redeem it from the prison
of the body. To achieve these ends the Pythagoreans maintained cel-
ibacy and performed rituals and ceremonial purgations. In addition,
they believed it necessary to observe certain taboos. They would not
wear wool clothing, eat meats or beans except on the occasion of a
religious sacrifice, touch a white cock, sit on a quart measure, walk
on the high roads, use iron to stir a fire, or leave marks of ashes on

40
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a pot. Once released from a body, the soul was reincarnated in an-
other. Xenophanes says that one day Pythagoras passed a dog being
beaten and he cried out, ‘Stop, beat no more, it is the soul of a friend;
I recognized it, hearing its complaints.’

The community devoted itself primarily to the study of philos-
ophy, science, and mathematics. As if it could foresee the terrible
uses to which some of this knowledge might be put, it pledged new
members to secrecy and required them to join up for life. Though
membership was restricted to men, women were admitted to lectures,
for Pythagoras believed that females were of some value. The esoteric
character of the group and its mystic and secret observances aroused
the suspicion and dislike of the people of Croton, who finally drove
the Pythagoreans out and burned their buildings. Pythagoras fled to
Metapontum in Southern Italy and, according to one story, was mur-
dered there. His followers, however, scattered to other Greek centers
and continued his teachings.

Concerning other mystical and speculative doctrines of the Pythag-
oreans we shall say more in a later chapter. At the moment we
should mention the fact that the Pythagoreans are credited with giv-
ing the subject of mathematics special and independent status. They
were the first group to treat mathematical concepts as abstractions,
and though Thales and his fellow Ionians bad established some the-
orems deductively, the Pythagoreans employed this process exclu-
sively and systematically. They distinguished mathematical theory
from practices such as geodesy and calculation, and proved the fun-
damental theorems of plane and solid geometry and of arithmetica,
the theory of numbers. To their dismay they also discovered and
proved the irrationality of the square root of two.

More widely known than the Pythagoreans was the Academy of
Plato, which had Aristotle as its most distinguished student. (The
latter founded his own school, the Lyceum, when he left the Acad-
emy at the time of Plato’s death.) We saw earlier that Plato’s pupils
were the most famous philosophers, mathematicians, and astronomers
of their age. Under Plato’s influence they emphasized pure math-
ematics to the extent of ignoring all practical applications and they
added immensely to the body of knowledge. The school retained its
pre-eminence in philosophy long after leadership in mathematics and
science passed on to Alexandria. When closed by Emperor Justinian
in the sixth century a.p., it had endured nine hundred years.
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The work of the many schools and of isolated individuals who
lived all over the Mediterranean area from Asia Minor to Sicily and
Southern Italy was unified by Euclid in one masterful book called
the Elements. This most famous account, formulated about oo B.C.,
therefore constitutes the mathematical history of an age as well as
the logical presentation of geometry. From a few sagaciously chosen
axioms, Euclid deduced all the important results of the Greek mas-
ters of the classical period, roughly some five hundred theorems.
The axioms, the arrangement, the form of presentation, and the
completion of partially developed topics were his.

Much of the material in Euclid’s Elements is familiar to us
through our high-school studies. Nevertheless, before we pass on to
consider the significance of this mathematics for our culture we
should like to review a few features of this most influential, and to
some, most revolting, textbook in history. It is the structure of
Euclid that concerns us for the moment.

Geometry, we know, deals with points, lines, planes, angles, circles,
triangles, and the like. For Euclid and for the Greeks whose work
Euclid was presenting, those terms represented not physical objects
themselves, but concepts abstracted from physical objects. Actually
only a few properties of the physical object are reflected in the
mathematical abstraction to which it gives rise. The stretched string
gave rise 10 the mathematical straight line but the color of the string
and the material of which it was made are not properties of the
straight line. To be precise about what his abstract terms included
Euclid began with some definitions. A straight line he defined as
that which lies evenly between its ends. (The abstraction from the
stretched string and the mason’s level is clearly evident here.) A
point, he said, is that which has no parts. And so on to triangles,
circles, polygons, and the like.

In his definitions Euclid went to unnecessary and inadvisable
lengths. A logical, self-sufficient system must start somewhere. It can-
not hope to define every concept it uses, for definition involves de-
scribing one concept in terms of others and the latter in terms of still
others. Obviously, if the process is not to be circular, a person must
start with some undefined terms and define others in terms of these.
For example, Euclid’s definition of a point as that which has no parts
obviously calls for a definition of parts. Other writers in attempting
to improve on Euclid have defined a point as pure position. And
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what, then, is position? No doubt in some social spheres position is
everything in life, but the concept of position does not clarify the
meaning of point.

Again, we are saying that not all concepts can be defined in a self-
contained system. It is true that all the concepts arise from and
represent definite physical objects but these physical meanings are
of no help in the process of formal definition because they are not
part of mathematics. Surprisingly, the inability to define some of
the concepts with which geometry deals causes no hardship, as we
shall see in a moment.

Having defined, at least to his satisfaction, the concepts with which
he was to deal, Euclid proceeded to the all-important task of establish-
ing facts or theorems about them. To undertake the deductive proc-
ess he needed premises for, as Aristotle points out,

It is not everything that can be proved, otherwise the chain of proof
would be endless. You must begin somewhere, and you start with things
admitted but undemonstrable. These are first principles common to all
sciences which are called axioms or common opinions.

In the selection of axioms Euclid displayed great insight and
judgment. The mathematicians of the leading schools had started
with axioms acceptable to them. As the contributions increased in
number there was a growing danger that many axioms were being
employed which not all mathematicians would regard as unques-
tionably true of the physical world. Also, there was an unnecessary
profusion of axioms, a wasteful state of affairs from a logical stand-
point, since it is always better to assume as little as possible and to
prove those statements which can be deduced from the axioms
already accepted. Hence Euclid’s task was to find an adequate and
universally acceptable set of axioms for geometry. Moreover, since
the geometrical investigations of the Greeks were part and parcel
of their search for truth, these axioms had to be unquestionable,
absolute truths.

The axioms which Euclid proposed state properties of points,
lines, and other geometrical figures that are possessed by their physi-
cal counterparts. The properties in question appear to be so ob-
viously true of these physical objects that all men have been willing
to agree to them as a basis for further reasoning. The extraordinary
merit of Euclid’s selection is that though they are immediately ac-
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ceptable they are no mere superficialities, for they lead to profound
consequences. Moreover, he was able to choose a very limited num-
ber, ten in all, and yet secure the construction of the whole system
of geometry.

Merely to reassure ourselves of the wisdom of Euclid’s choice,
let us recall one or two of his axioms. He aflirmed that, ‘It shall be
possible to draw a straight line joining any two points’; that, ‘It
shall be possible to draw a circle with given center and through a
given point’; and that, “The whole is greater than any of its parts.’
Surely these are unassailable and acceptable to all men.

C

A \,

D
Figure 4. An isosceles triangle

Having selected the concepts with which geometry is to deal and
having chosen basic truths about these concepts, Euclid proceeded
to establish theorems or conclusions. The method of proof was, of
course, strictly deductive. In order to appreciate fully why later gen-
erations esteemed the solidity of Euclid’s conclusions, let us review
one of his proofs.

An early theorem in Euclid asserts that the base angles of an
isoceles triangle are equal. This theorem has special interest because,
despite its elementary character, it marked the limit of the study of
geometry in medieval universities. It has been called the ‘pons asino-
rum’ or the ‘bridge of asses’ because fools could not comprehend this
proof and hence, like asses at a bridge, would proceed no further.

Before we review the proof, let us examine the meaning of the
theorem. If ABC (fig. 4) is an isoceles triangle, two sides, say AC and
BC, are equal. We wish to prove that the base angles 4 and B, that
1s the angles opposite the equal sides, are equal.

The proof begins by drawing the line CD which bisects the angle
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C of the triangle. The justification for this step is the following.
Euclid showed previously that any angle could be bisected. Since C
is an angle, it too can therefore be bisected. The deductive reasoning
here is of the form: all apples are red; here is an apple; hence this
apple must be red.

Introduction of the line CD divides triangle ABC into two tri-
angles ACD and DCB. Of these triangles we know, first, that 4C
equals CB, because the original triangle ABC is stated to be isosceles.
Second, angle ACD equals angle DCB because CD is the angle bi-
sector. Third, since CD is common to the two smaller triangles, these
triangles have this equal side. We may therefore assert that triangle
ADC is congruent to triangle DCB because a previous theorem as-
serts that any two triangles which have two sides and the included
angle of one equal to two sides and the included angle of the other
are congruent. Since the two triangles in question have such equal
parts, these two triangles are congruent. We may assert, finally, that
angle 4 equals angle B because, by the very definition of congruent
triangles, corresponding parts are equal, and angles 4 and B are
such corresponding parts.

The theorem in question is therefore proved by several deductive
arguments, each of which employs unquestionable premises and
yields an unquestionable conclusion. Of course, not all the proofs in
Euclid are so simple. Nevertheless, each proof, no matter how com-
plex it may seem to be at first glance, consists of no more than a
series of simple deductive arguments.

We need not re-examine one by one the theorems that Euclid
established. It will be enough to mention that from the axioms some
simple theorems are immediately proved, and that these furnish
steppingstones to more elaborate theorems, the whole structure be-
ing marvelously and closely knit. Indeed, many students have fumed
that so large a number of seemingly involved theorems can be de-
rived from so few self-evident axioms.

Let us see next that Euclid’s topics concern fundamental proper-
ties of the sizes and shapes of objects. His first major concern was
under what conditions two objects are equal in size and shape, that
is, under what conditions these objects are congruent. Suppose, for
example, a surveyor has two pieces of land, triangular in shape. How
can he establish that the two are equal? Must he measure every side,
every angle, and even the areas of both to decide the equality? Not
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with the theorems of Euclid to aid him. Two triangles are equal in
all respects if, for example, the sides of one are known to be equal
respectively to the sides of the other. This fact hardly seems to be
more than a triviality but the reader can see it is not quite that if he
asks himself under what conditions he can guarantee the complete
equality of two quadrilaterals, that is, two four-sided figures. Such
questions and related ones apply, of course, to all sorts of geometric
figures.

Euclid asked next: if figures are not equal, what significant rela-
tionship may they bear to each other and what geometric properties
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Figure . Two similar triangles

can they have in common? The relationship he chose is shape. Fig-
ures of unequal size but of the same shape, that is, similar figures,
have many geometric properties in common. As applied to triangles,
for example, similarity means that the angles of one equal the cor-
responding angles of the other. From this defining property it fol-
lows that the ratio of any two corresponding sides is constant. Thus
if ABC and A’B’C’ are similar triangles (fig. 5), then AB/A’B’ equals
BC/B’C’. Moreover, if the ratio of two corresponding sides is 7, say,
then the ratio of the two areas is 72

If figures have neither shape nor size in common, what can be
said about them? They may, of course, have the same area, or, in
geometric terms, they may be equivalent. Or they may be inscrib-
able in the same circle. The number of possible relationships and
the questions that can be raised about each are endless. Euclid
selected fundamental ones.

All of the concepts Euclid studied he applied not merely to figures
formed by straight lines but also to circles and spheres. Interest in
these figures was considerable, for, to the Greeks, the circle and the
sphere were perfect figures.
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From the standpoint of aesthetic appeal another class of figures
was equally enticing to them. Among triangles, the equilateral tri-
angle was noteworthy because its sides are equal in length and its
angles are of the same size. Among four-sided figures, the square was
attractive for the same reason. Plane figures with five, six, and more
sides can also be constructed so that the sides of the figure are all
equal as are the angles. Such figures are called regular polygons and
were studied in detail. Complete surfaces can be formed with regular
polygons, any one surface to be built up with only one kind of
polygon. For example, the surface of a cube is a complete surface
built up by joining six squares along their edges. Such surfaces, of
which the cube is but one type, are called regular polyhedra.

One of the first questions raised in connection with regular poly-
hedra was, how many different types are there? By masterful reason-
ing, which we shall not repeat here, Euclid showed that there must
be exactly five types of regular polyhedra. These are pictured in
figure 6. Plato admired these figures so much that he could not con-
ceive of God not making use of them. He therefore elaborated on
one Greek school of thought, which affirmed that all objects are
composed of four elements, earth, air, fire, and water, by adding that
the fundamental particles of fire had the shape of the tetrahedron,
those of air had the shape of the octahedron, those of water, the
icosahedron, and those of earth, the cube. The fifth shape, the do-
decahedron, God reserved for the shape of the universe itself.

The Greeks studied exhaustively another class of curves. We are
all familiar with a cone-shaped figure such as an ice cream cone. If
we have two such very long cones, placed as shown in figure 7, we
get what mathematicians call a conical surface, or sometimes just a
cone. This conical surface consists of two parts, extending on oppo-
site sides of O and to an unlimited extent in both directions. If a
conical surface is intersected by a plane (merely a flat surface like a
table-top, having no thickness and extending indefinitely in all di-
rections) a curve of intersection results, the shape of which depends
on the position of the plane in relation to the cone. Thus when the
plane cuts entirely through one part of the cone, the curve of inter-
section is an ellipse (DEF in fig. 7), or a circle (ABC in fig. 4). 1f the
cutting plane is inclined so as to cut both parts of the cone, the
curve of intersection consists of two parts and is called a hyperbola
(RST and R’S’T’ in fig. 7). If, finally, the cutting plane is parallel
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TETRAHEDRON OCTAHEDRON

DODECAHEDRON ICOSAHEDRON
Figure 6. The five regular polyhedra



THE ELEMENTS OF EUCLID 49

to one of the lines of the cone, such as POP, the intersection is called
a parabola (GIK in fig. 7).

The basic facts about the conic sections were similarly collected
and organized by Euclid in a book which is lost to us. A little after

AY

s

- Sra
. -,

oy,

Figure /7. A conical surface and the sections made by intersecting planes

Euclid’s time another famous mathematician, Apollonius, wrote on
the subject a treatise which is extant and for which he is almost as
famous as Euclid is for his Elements. Many other mathematical
works were created and written in this classical period, but few of
these have survived. If we judge by the books and fragments we do
have, it is fairly certain that the age was one of tremendous creative
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activity, of intense interest in mathematics, and of unsurpassed bril-
liance.

CDQ\

ELLIPSE CIRCLE HYPERBOLA PARABOLA
Figure 8. The conic sections

Greek mathematics is as significant for the questions it raised and
did not answer as for those it did. Among such questions are three
famous ones known to every layman. They are called ‘squaring the
circle,” ‘doubling the cube,” and ‘trisecting the angle.” To square a
circle means to construct a square, the area of which is equal to the
area of a given circle. To double a cube means to construct the side
of a cube whose volume shall be double that of a given cube. Finally,
to trisect an angle means to divide any angle into three equal parts.
These constructions are to be performed with only a straightedge,
that is, an unmarked ruler, and a compass. No other instruments are
to be used.

The reasons for the restriction shed light on the classic attitude
toward mathematics. Straightedge and compass are the physical
counterparts of straight line and circle, and the Greeks, on the whole,
had limited their geometry to consideration of just these two figures
and figures immediately derivable from them. Even the conic sec-
tions, it will be seen, are obtained by passing a plane through a cone
and both of these figures, plane and cone, can be generated by a
moving straight line. This restriction to straight line and circle,
self-imposed and arbitrary, was motivated by the desire to keep
geometry simple, harmonious, and, therefore, aesthetically appealing.

Some Greeks, notably Plato, had other reasons, equally weighty
to them, for imposing the restriction. The introduction of more
complicated instruments which might be adequate to the solution of
the construction problems called for manual skill unworthy, in their
opinion, of a thinker. Plato said, further, that by using complicated
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instruments ‘the good of geometry is set aside and destroyed, for we
again reduce it to the world of sense, instead of elevating and im-
buing it with the eternal and incorporeal images of thought, even
as it is employed by God, for which reason He always is God.’

The three construction problems were very popular in Greece.
The first historical reference to them states that the philosopher
Anaxagoras passed time in prison trying to square the circle. De-
spite repeated efforts of the best Greek mathematicians, the problems
were not solved. Nor were they to be solved for the next two thou-
sand years. About seventy years ago it was finally proved that the
constructions cannot be performed under the conditions stated. De-
spite this fact, people still try and often claim success. We can assert
without examining their work that they are in error or have mis-
understood the problems.

The long years of labor on these famous problems indicate the
care, the rigor, the patience, and the persistence of mathematicians.
The questions are not of practical importance, for the constructions
can be performed readily by resorting to instruments only slightly
more complicated than straightedge and compass. Nevertheless, peo-
ple with an irrepressible desire to meet intellectual challenges at-
tempted the theoretical constructions.

Actually, the search for iron has often led to gold. The conic sec-
tions, which paved the way for modern astronomy, were discovered
during attempts to perform the famous constructions, as were hosts
of other beautiful and useful mathematical results. In fact, if we
were to list those major mathematical ideas arrived at by tackling
impractical, ‘worthless’ problems, we might be led to define mathe-
matics as the development of the trivial. (Many an ‘educator,’ though
ignorant of the subject and its history, has not hesitated to render
this judgment.) The history of the work on the famous construction
problems shows how unfair are the attacks made on the ‘impractical’
Greeks, for these visionaries did far more for the advancement of
our scientific age than did the so-called practical people.

We have already praised the Greeks for having made mathematics
abstract. It would be well for our appreciation of the scope of mathe-
matics to see just what this abstractness implies, at least in Euclidean
geometry.

Let us consider a rather simple situation. Suppose we select any
two fixed points 4 and B, and a line L not through 4 or B but in
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the same plane (fig. 9). Suppose, in addition, we wish to find that
point P on line L for which the distance AP + PB is least; that is,
if Q is any other point on L then AP + PB must be less than AQ +
QB. This problem is a purely geometrical one. It is not hard to
prove that if P is chosen so that AP and BP make equal angles with
line L, then the distance AP 4 PB is least.

Let us take the proof of this theorem for granted, and let us see
how the theorem could be applied to practical situations. Suppose
A and B are the positions of two towns and L is a river. A pier which

Figure g

will serve both towns is to be built along the river in such a way that
the total distance from the pier to town 4 and from the pier to town
B is as short as possible. At what point along the river should the
pier be placed? Our general theorem furnishes the answer: At that
point P where AP and PB make equal angles with the river.

Let us consider another ‘practical’ situation. A billiard ball situ-
ated at a point A on the table is to be hit so that it will rebound
from the side L of the billiard table and hit the ball at B. A billiard
ball always behaves so that the angle its path makes in approaching
the side of the table equals the angle its path makes in rebounding.
That is, in figure 10, angle 1 equals angle 2. Every billiard player
knows this fact at least subconsciously and uses it. That is, he directs
the ball to the point P so that AP and PB make equal angles with
the side. But he undoubtedly does not know that the path he selects,
and hopes the ball will take, is the shortest path that a ball can take
in going from A to B by rebounding from the side of the table.

Our illustrations show how one mathematical theorem supplies
information in two widely different and unrelated situations. There
are, in fact, numerous other applications of the same theorem. The
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fact that a theorem developed to answer a question in one field so
often turns out to be vital in a completely different one fills the his-
tory of mathematics with surprises. Of course, this broad applicabil:
ity of mathematics is bought at a price, the price of abstractness, for
to achieve theorems about all triangles by working with the ideal
triangle, the mathematician must struggle with elusive and some-
times unmanageable thoughts instead of fingering a triangle made
of wood.

Figure 10

There is another point about the relation of the abstract theo-
rems of mathematics to their applications that it is very important
to keep in mind, namely, that the abstract theorem states the ideal
case, whereas the physical situation to which it is applied may fall
far short of the ideal. Suppose, for example, we lay out a triangle on
the surface of the Earth. Can we apply the theorems of plane geom-
etry to this triangle? In the first place, the Earth is spherical and not
flat. Moreover, the Earth’s surface is hardly that of a perfect sphere,
but is rather irregular. On at least two accounts, then, this triangle
on the Farth’s surface falls short of the ideal triangle of plane geom-
etry. Hence, there is likely to be some error involved in the use of
the mathematical theorem. To the extent that the physical triangle
approaches the ideal, the conclusions of mathematics will apply.
Failure to recognize this fact can lead to serious error in application.

The creation of Euclidean geometry was more than the contribu-
tion of some useful and beautiful theorems. It engendered a rational
spirit. No other human creation has demonstrated how much knowl-
edge can be derived by reasoning alone as have the hundreds of
proofs in Euclid. The deduction of these numerous and profound
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results taught the Greeks and later civilizations the power of reason
and gave them confidence in what could be achieved by this faculty.
Encouraged by this evidence, Western man was inspired to apply
reason elsewhere. Theologians, logicians, philosophers, statesmen,
and all seekers of truth have imitated the form and procedure of
Euclidean geometry.

Even among the Greeks themselves mathematics was set up as the
standard for all the sciences. Aristotle, in particular, insisted that each
science must consist in the deductive demonstration of truths from
a few fundamental principles established by some method suited to
the science and serving as do the axioms of Euclidean geometry. The
oft-repeated motto on the entrance to Plato’s Academy, ‘Let no one
ignorant of mathematics enter here,’ epitomizes this regard for
mathematics.

Western man learned from the Euclidean Elements how perfect
reasoning should proceed, how to acquire facility in it, and how to
distinguish exact reasoning from vague mouthings which carry
merely the pretense of proof. During the course of the development
of geometry the Greeks came to recognize general principles of rea-
soning, among which the syllogistic laws are now most widely known.
They also discovered general methods of attack on problems. For
example, Plato is credited with devising the analytical attack, which
starts with the desired conclusion and deduces consequences until a
known fact is reached. The correct proof is then made by reversing
the exploratory steps. The reader may recall using this method him-
self in Euclidean geometry to discover the proof of a theorem. Of
course, the method transcends geometry. Greek geometers also dis-
covered and gloried in the power of the indirect method of proof,
which pursues the implications of several alternatives in the expec-
tation that all but the correct one will lead to contradictions and
hence must be discarded. The logical foundations on which this
method rests, known to logicians as the laws of contradiction and
excluded middle, were formulated by Aristotle.

The necessity for accurate definition, for clearly stated assump-
tions, and for rigorous proof also became evident in the course
of the work on geometry. Men such as Socrates and Plato not only
stressed these needs but in turn contributed to mathematics polish,
smoothness, and clear structure. In effect, the grand exercise in logic
that geometry afforded to the Greeks led to the construction and
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systemization by Aristotle of those laws of thought now accepted and
applied by all of us. Thus Greek geometry served as the progenitor
of the science of logic.

Hundreds of generations since Greek times have also learned how
to reason by studying Euclid, a procedure deprecated by many peo-
ple, who argue that we can learn logic without studying mathe-
matics. The argument is as valid as the statement that we can all
conceive of great paintings and so the world would be as well off
with the conceptions as with the paintings themselves. Unfortu-
nately, the concept of a painting never stirred a heart.

The importance of Euclid transcends by far its values as a logical
exercise and as a model of reasoning. With the development of the
beautiful structure and elegant reasoning of geometry, mathematics
was transformed from a tool for the advancement of other activities
to an art. It was appreciated as such by the Greeks. Arithmetic,
geometry, and astronomy were to them music for the soul and the
art of the mind.

Indeed, rational and aesthetic as well as moral interests can hardly
be separated in Greek thought. Repeatedly we read that the Earth
must be spherical because the sphere has the most beautiful shape
of all bodies and is therefore divine and good. For the same reason
Plato believed that the sun, moon, and stars were each rigidly at-
tached to a sphere that rotated on its own axis about the Earth.
Moreover, the path of each body must be a circle, for the circle
shared aesthetic appeal with the sphere. The circle and the sphere
were the perfect paths which represented the changeless, eternal
order of the heavens as contrasted with straight-line motion which
prevailed on the imperfect Earth. For aesthetic and moral reasons,
too, it was decided that the heavenly bodies moved with uniform
speed, traversing equal distances in equal intervals of time. This
stately, regular, unhurried motion befitted heavenly bodies. In fact,
argued the Pythagoreans, inconstant speed for the planets is inad-
missible; ‘even in the human sphere, such irregularity is incom-
patible with the orderly procedure of a gentleman.” The truths of
poetry and the truths of science were one or, to paraphrase Aristotle,
nature’s purpose and her deep-seated laws all tend in her multitu-
dinous work to one form or another of the beautiful.

Geometry, philosophy, logic, and art were all expressions of one
type of mind, one outlook on the universe, and it is fascinating to
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trace, as some historians have, the existence of common character-
istics in all these phases of the classic Greek culture. For example,
the clear, transparent, and simple structure of Euclidean geometry
is a mathematical manifestation of the same love of clarity and or-
dered design which the plain, simple forms of the Greek temple dis-
play. Infinitely complex by comparison is the Gothic cathedral with
its multitudinous subordinate interior and exterior structures. Greek
sculpture of the classical period is also surprisingly simple. No elabo-
rate dress, military decorations, frills, or furbelows clutter up the
statue or detract from the principal theme.

In a like manner, the literary classics of the period were written in
a simple, clear, matter-of-fact style, sparing of imagery and adjec-
tive. We have but to contrast the nightingale whose song has
‘charmed magic casements, opening on the foam of perilous seas, in
fairy lands forlorn,” with Sophocles’ bird who ‘sings her clear note
deep in green glades ivy-grown, sheltered alike from sunshine and
from wind’ to perceive the qualities of Greek style. Lucidity, sim-
plicity, and restraint were the ingredients of beauty. Greek art is
the art of the intellectual, the art of clear thinkers, and it is, conse-
quently, plain art. Nevertheless, the geometry, architecture, sculp-
ture, and literature achieve a beauty and elegance that transcend
their simplicity.

Euclidean geometry is often described as being closed and finite.
These adjectives apply in several senses. The subject matter is lim-
ited, as we have seen, to figures that can be constructed with straight-
edge and compass and to theorems that can be derived from a fixed
set of axioms. No new axioms are introduced as the reasoning un-
folds the subject. Euclidean geometry is finite in the sense, too, that
it avoids the infinite. The straight line, for examplé, is not consid-
ered in its entirety by Euclid. Rather, he said, a line segment can
be extended as far as necessary in either direction, as though he
begrudged the necessity for extension. So too, in treating the whole
numbers, the Greeks thought of this set as potentially infinite, that
is, infinite only in the sense that more numbers can always be added
to any given finite set; they would not deal with the entire collec-
tion of whole numbers as an entity in itself.

These characteristics of closure and finiteness are also dominant
in Greek architecture. The whole structure of a Greek temple is
small, near at hand, completely visible to the observer. It suggests
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finality, completeness, and definiteness. The eye and mind soon
grasp and encompass its proportions and grandeur. The Greek tem-
ple may be compared with the Gothic in these respects too. The
latter is almost never visualized as a whole. It seems to lose itself in
all directions and escape complete comprehension. It suggests great
distances and, through its spires, spiritual aspiration. The imagina-
tion is stirred and the individual awed by endless vistas of receding
arches and by high altars visible in the gloomy interiors as if from
a distance, while immense size conjures up impressions of the in-
visible. The sense of finiteness is vanquished as the high structure
swallows the individual and loses him in its dim interiors.

In Greek science the concept of the infinite is scarcely understood
and frankly avoided. The simplest type of motion for the Greeks is
not, as it is for us, along a straight line, because the straight line is
not perceptible in its entirety; straight-line motion is never com-
pleted. The Greeks preferred circular motion. The concept of a
limitless process frightened them and they shrank before ‘the silence
of the infinite spaces.’

In philosophy, too, the infinite was avoided. Paradoxes of the in-
finite, some of which we shall encounter later, proved insurmount-
able barriers to Greek philosophic thought. Aristotle says the infinite
is imperfect, unfinished, and therefore unthinkable. It is formless
and confused. Good and evil were founded, in fact, on the notions
of the limited and determinate, for the one, and on the indeter-
minate and infinite for the other. The limited and definite qualities
of objects also gave them character and perfection. Only as objects
were distinct and defined did they have a mnature and meaning.
‘Nothing that is vast enters into the life of mortals without a curse,’
says Sophocles.

Another characteristic of Greek mathematics runs throughout the
culture. Euclidean geometry is static. The properties of changing
figures are not investigated. Rather, figures are given in their en-
tirety and are studied as is. The restful atmosphere of the Greek
temple reflects this theme. Mind and spirit are at peace there. So,
also, in Greek sculpture the figures are static, aloof, psychologically
calm. They are as emotionally aroused as an equilateral triangle.
Myron’s: ‘Discus Thrower’ (plate 1), who is about to make a tre-
mendous physical effort, is as calm and unruffled as the proverbial
Englishman drinking tea.
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The static character of the Greek drama, too, has often been
pointed out. There is little or no action. We are presented at the
very beginning of the play with a complete account of prior hap-
penings that pose a problem or predicament for the characters in-
volved, and the play concerns itself with mental struggles and minor
deeds that eventuate in a denouement almost foreseen.

Linked with the static quality of the Greek drama is another char-
acteristic also found in Euclidean geometry. The Greek tragedies
emphasize the workings of fate or necessity. The characters in a play
do not seem to have the will or the power to make decisions but are
driven by hidden forces. Thus Oedipus is forced relentlessly to incest
and patricide. The working of fate has been likened to the com-
pulsion inherent in the use of deductive reasoning, wherein the
mathematician is not free to choose the conclusions he may draw
from his premises but is forced to accept the necessary consequences.

There is one other major characteristic of Greek art, geometry,
and philosophy which, though generally present in such creations,
nevertheless seems pre-eminently so with the Greeks. Their works
reflect the fact that they strove to view the universe sub specie aeter-
nitas. They sought knowledge of what is universal and eternal rather
than individualistic and fleeting. The mathematical sphere is eternal
and its mathematical properties will hold forever. Hence knowledge
of the sphere is most desirable. The water bubble and the brilliantly
colored balloon, fascinating though they may be, are not worthy of
attention, for they will soon burst. So, too, Greek art of the classical
period strove to evoke and depict the broad, basic qualities not of
men but of man. What mattered in any one person were the quali-
ties he displayed of mankind in general. Dress, individual relations,
and daily activities, all these were accidental and trivial details. In
their philosophical speculations, the Greeks also sought to define and
understand the perfect form of concepts and qualities, for the per-
fect is by its very nature eternal. The perfect state was worthy of
contemplation; the democratization of Greek society was hardly
recognized as a serious problem.

The mathematics we have thus far surveyed and the culture it
reflects belong to the classical Greek period. They do not by any
means exhaust the contributions of the ‘morning-land of civilization’
to mathematics and to our own lives and thought, for the significant
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epoch extending from about 300 B.C. to A.D. 600 still awaits us. Be-
fore turning the page let us recall that the age we are leaving created
mathematics in the sense in which we understand the term today.
The insistence on deduction as the exclusive method of proof, the
preference for the abstract as opposed to the particular, and the
selection of a most fruitful and highly acceptable set of axioms de-
termined the character of modern mathematics, while the divina-
tion and proof of numerous fundamental theorems sent it well on
its way. Accompanying the mathematics and indeed shining forth
from it was the brilliant light of human reason which was first
kindled by the Greeks. Their mathematical documents proclaimed
the supremacy of mind in human affairs and therewith a new con-
cept of civilization.



N

Placing a Yardstick to the Stars

"Tis late; the astronomer in his loncly height
Exploring all the dark, descries from for
Orbs that like distant isles of splendor u €,

He summons one disheveled, wandering star,
‘Return ten centuries hence on such a night.

That star will come. It dare not by one hour

Cheat science, or falsify her calculation;

Men will have passed, but watchful in the tower
Man shall remain in sleepless contemplation;

And should all men have perished there in turn,
Truth in their stead would watch that star’s return.

SULLY PRUDHOMME

For at least four thousand years the civilization of Egypt followed a
rigid pattern. In religion, mathematics, philosophy, commerce, and
agriculture each man imitated his forefathers. No external influ-
ences disrupted the calm life and fixed ways. Then, about 325 B.C.,
Alexander the Great conquered this vast land, as well as Greece and
the Near Fast, and proceeded to Hellenize his conquests. He founded
the city of Alexandria and moved the capital of the ancient world
from Athens to this new city; then the conquering culture was in its
turn conquered. From a fusion of cultures, centered at Alexandria,
a new civilization appeared and made its very significant and dis-
tinctive contribution to mathematics and to Western civilization.
Alexandria became the center of the entire ancient world, for it
was ideally located at the junction of Asia, Africa, and Europe. On
the streets of the city native Egyptians met and traded with Greeks,
Jews, Persians, Ethiopians, Syrians, Romans, and Arabs. Aristocrat,
citizen, and slave jostled each other. No city in the world, not even

modern New York. has ever embraced a greater variety of peoples.
60
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To this important center came traders and businessmen from all
corners of the world. In the harbor were ships that brought wines
from Italy, tin from Wales, and amber from Sweden. Outward-
bound ships sailed to the Ganges and Canton. The Alexandrian
traders not only spread Greek culture over the world but brought
back to Alexandria knowledge that had been acquired in other
countries. As a result, the city became truly cosmopolitan while the
wealth that was accumulated permitted expansion in many direc-
tions. Splendid buildings, statues, obelisks, mausoleums, tombs, tem-
ples, and synagogues abounded. To the pleasure-loving, Alexandria
offered bazaars, baths, parks, theaters, libraries, a hippodrome, a race
course, and homes for the wealthy.

Credit for making Alexandria the intellectual center of the new
world does not go to the founder of the city, who died while still
engaged in conquests, but to the very capable Ptolemy the First, the
general who took over control of Egypt on the death of Alexander.
Aware of the cultural importance of the great Greek schools such as
tnose founded by Pythagoras, Plato, and Aristotle, Ptolemy decided
that Alexandria should have such a school and that it should become
the center of Greek culture in this new world. He built, therefore,
a home for the Muses to whom scholars were dedicated.

Adjacent to the Museum Ptolemy built a library not only for the
preservation of important manuscripts but also for the use of the
general public. This famous library was said at one time to contain
750,000 volumes. Together with the Museum, the library resembled
a modern university, though no university of today can boast of
pussessing as many great intellects as were assembled there.

Scholars of all countries were invited to Alexandria by Ptolemy
and were supported by grants from him. Consequently, there gath-
ered at this Museumn poets, philosophers, philologists, astronomers,
geographers, physicians, historians, artists, and the most famous
mathematicians of the Alexandrian age. The principal group of the
scholars gathered at the Museum was Greek, but distinguished mem-
bers of many other nations also settled there. Among the non-Greeks
the most celebrated was the learned Egyptian astronomer, Claudius
Ptolemy.

Two factors seem to have vitally influenced the character of the
culture which grew out of the mixture of peoples and scholars and
the broadened physical horizons. The commercial interests of the
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Alexandrians, more extensive than those of the Athenians, brought
geographical and navigational problems to the fore and directed
attention to materials, methods of production, and the improvement
of skills. Second, because the commerce was carried on by free people
who were not segregated socially from the scholars, the latter became
aware of and involved in the problems facing the people at large.
As a result, scholars were induced to unite the flourishing theoretical
studies with concrete scientific and engineering investigations. Tech-
nical fields were pursued and extended; training schools were estab-
lished; and mechanics and other sciences were advanced. Also, arts
despised or ignored in the classical period were taken up with zest.

The ingenuity of the mechanical devices invented by the Alexan-
drians in response to the new interests are astonishing even by mod-
ern standards. They designed improved water clocks and sun dials
and used them to good advantage in the courts to limit lawyers’
speeches. Pumps, pulleys, wedges, tackles, geared devices, and a mile-
age-measuring device no different from the one to be found in the
modern automobile were widely employed. Among the mechanical
inventions were new instruments for astronomical measurements.
To the mathematician and inventor Heron (first century 8.c.), the
age owed an automatic machine for sprinkling holy water when a
five-drachma coin was inserted. Musical organs could be operated
in a similar way. The temples mystified the public with doors that
opened when coins were deposited.

The study of gases and liquids produced a water-driven organ, a
gun powered by compressed air, and a hose for spraying liquid fire.
The public gardens were enhanced by water fountains with moving
statues driven by water pressure. The generation of steam power
was another development of the Alexandrians. It was used to drive
automobiles along the city streets in the annual religious parades.
When produced by fires maintained under the temple altars, the
steam put life into the gods. Awe-struck audiences observed gods
who raised their hands to bless the worshippers, gods who shed tears,
and statues that poured out libations. Mechanical doves rose up into
the air and descended by means of the unobservable action of the
steam.

The Alexandrians also applied knowledge of the behavior of
sound and light to practical devices. Most spectacular of these was
Archimedes’ huge mirror which concentrated the sun’s rays on
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Roman ships besieging his native city of Syracuse. The ships were
supposed to have burned under the intense heat.

In contrast to the closely guarded and orally transmitted learning
of an earlier Fgyptian period, books freely disseminated the new
knowledge. Fortunately for the Alexandrians, Egyptian papyrus was
cheaper than parchment and so Alexandria became the center of the
book-copying trade of the ancient world. For the first time in the
history of science there appeared an excellent work on mechanical
and metallurgical knowledge. The principles underlying water- and
steam-driven devices were explained in treatises on pneumatics and
hydrostatics while other treatises explained the construction of
vaults, catapults, and tunnels. Ingenious for those times were
Heron’s mathematical prescriptions for digging tunnels under a
mountain, which made it possible to work from both ends and meet
in the middle.

Of course mathematics had a most important place in the Alexan-
drian world, but it was not the mathematics that the classical Greek
scholars knew. No matter what some mathematicians may say about
the purity of their thoughts and their indifference to, or elevation
above, their environment, the fact of the matter is that the Hellenis-
tic civilization of Alexandria produced a kind of mathematics almost
opposite in character to that produced by the classical Greek age.
The new mathematics was practical, the earlier entirely unrelated
to application. The new mathematics measured the number of
grains of sand in the universe and the distance to the farthest stars;
the older one refused to measure. The new mathematics enabled
men to travel over land and sea; the older one prepared him to sit
motionless and to view with his mind’s eye the immaterial abstrac-
tions of philosophic thought. The great Alexandrian mathemati-
cians, Eratosthenes, Archimedes, Hipparchus, Ptolemy, Heron, Me-
nelaus, Diophantus, and Pappus, though they displayed almost
without exception the Greek genius for theoretical abstractions,
nevertheless were quite willing to apply their talents to the practical
problems necessarily important in their civilization.

Typical of the new Greek was Eratosthenes (275-194 B.c.), director
of the library at Alexandria and universal genius. Distinguished in
the classical pursuits of mathematics, poetry, philosophy, and his-
tory, he also displayed profound learning in geodesy and geography.
Not only did Eratosthenes collect and integrate all available his-
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torical and geographical knowledge, but he made maps of the entire
universe known to the Greeks. He also found a simple way of meas-
uring the radius of the Earth and of surveying large tracts of land.
Astronomical measurements and the construction of astronomical
instruments added to his fame.

Eratosthenes also improved the calendar. Most early civilizations
had difficulty in keeping track of celestial events because they did
not know the exact length of the solar year. For example, one early
Greek calendar, descending most probably from the Babylonians,
was based on a year of twelve months each containing thirty days.
The inadequacy of this calendar became clear when dates originally
planned to designate particular astronomical events, such as an equi-
nox, occurred too late or too soon. Naturally the gods objected to
such mismanagement of their affairs. Aristophanes records their
complaint as transmitted through the Clouds:

The Moon by us to you her greeting sends,

But bids us say that she’s an ill-used moon,

And takes it much amiss that you should still
Shuffle her days, and turn them topsy-turvy;

And that the gods (who know their feast-days well),
By your false count are sent home supperless,

And scold and storm at her for your neglect.

Eratosthenes’ calendar called for a year of 465 days and an extra day
every fourth year. This calendar was later adopted by the Romans
and is essentially the one we use today. Eratosthenes also insisted
upon dating all events by the calendar as opposed to the earlier
Greek practice of dating by the number of Olympiads since the fall of
Troy, or the practice common in other civilizations of dating by the
number of years in a king’s reign. Eratosthenes worked at Alexandria
until blindness overtook him in his old age, whereupon he ended
his life by starving himself to death.

The man whose work best epitomizes the character of the Alexan-
drian age is Archimedes, one of the greatest intellects of antiquity.
Though born in Syracuse, a Greek settlement in Sicily, Archimedes
received his education in Alexandria. He then returned to Syracuse
where he spent the rest of his life. Possessed of a lofty intellect, great
breadth of interest both practical and theoretical, extraordinary
mechanical skill, and a fertile imagination which Voltaire declared
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to be finer than Homer’s, he was greatly respected and admired by
his contemporaries.

The most obvious indications of Archimedes’ practical interests
are his highly original inventions. In his youth he constructed a
planetarium which reproduced the motions of the heavenly bodies.
He invented a pump for raising water from a river; used compound
pulleys to launch a galley for King Hiero of Syracuse; and invented
military engines and catapults to protect Syracuse when it was under
attack by the Romans. It was at this time that he applied the focus-
ing property of a curved mirror to burn the Roman ships. He also
developed the use of the lever to move great weights.

Perhaps the most famous of his scientific discoveries is the hydro-
static principle now named after him. A story has come down in
history that tells how Archimedes was led to make this discovery.
The king of Syracuse ordered a crown made of gold. When the
crown was delivered he suspected that it was filled with baser metals,
and so he sent it to Archimedes and asked him to devise some
method of testing the contents without, of course, destroying the
workmanship. Archimedes pondered the problem and one day while
bathing observed that his body was partly buoyed up by the water
He suddenly grasped the principle that enabled him to handle the
problem. He had discovered that a body immersed in water is buoyed
up by a force equal to the weight of the water displaced. Since the
weight of the displaced water as well as the weight of a body in air
can be measured, the ratio of the weights is known. This ratio is
constant for a given metal no matter what its shape, and differs from
metal to metal. Hence Archrimedes had but to determine this ratio
for a piece of metal known to be gold and compare it with the corre-
sponding ratio for the crown. Unfortunately, history does not record
his decision. The principle that Archimedes discovered is one of the
first universal laws of science; he incorporated it among others in
his book, On Floating Bodies.

Even his theoretical work in mathematics was influenced by the
spirit of the Alexandrian age, for he devoted a great deal of his
time to problems of measurement. He proved that the area of a
circle is half the circumference times the radius, which gives the
usual »r? formula, and then determined the value of ». The result
of his computations—that = lies between 3% and 3% ,—was indeed
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remarkable for his times. He also proved many other formulas for
area and volume.

Moved again by the spirit of the age, Archimedes undertook a
task repugnant to the Greek of the classical period. He devised a
system for expressing large numbers and, in a final account of this
work which he entitled The Sand Reckoner, showed how it was pos-
sible to express the number of all the grains of sand in the universe.

However much Archimedes may have been moved by the practi-
cal interests of the times, he nevertheless possessed the classical
Greeks’ love for basic theory. Of all his accomplishments, he was
proudest of a theoretical one. We know this from his request that
there be inscribed on his tombstone the figure of a sphere, a cylinder
circumscribed about it, and the ratio two-thirds. This refers to his
great discovery that the ratio of the volume of a sphere inscribed in
a cylinder to the volume of the cylinder is as two is to three, and that
the ratio of the surface of the sphere to the surface of the cylinder
is similarly two-thirds.

The death as well as the life of Archimedes epitomizes the events
of his age. We have already related that he was challenged by one
of the Roman soldiers who had just captured Syracuse. Archimedes
was so lost in thought that he did not hear the challenge, whereupon
the soldier killed him despite the order of the Roman commander,
Marcellus, that Archimedes not be harmed. Archimedes was then
seventy-five years old and still in full possession of all his powers. By
way of compensation the Romans built an elaborate tomb upon
which they inscribed the famous theorem referred to above.

In the field of mathematics proper the Alexandrians created and
applied methods of indirect measurement. Their simplest contribu-
tions to this subject were formulas for areas and volumes of particular
geometrical shapes. These formulas, surprisingly, are not in Fuclid,
for though Fuclid lived at the beginning of the Alexandrian age, his
subject matter was really the summation and culmination of the
mathematics of the classical period. That the areas of two similar tri-
angles are to each other as the squares of corresponding sides was of
great interest to Euclid, but that the area of any one single triangle
could be found directly by taking the product of its base and half its
altitude was made known to us by the Alexandrians.

The contribution of formulas for areas and volumes is often under-
estimated. How does a person find out the area of a floor? Does he
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take little squares one foot on a side, lay them out over the entire
floor, and thus decide that the area of a floor is 100 square feet, for
this indeed is the meaning of area? Of course he does not. He meas-
ures the length and width, quantities usually quite simple to meas-
ure, and then multiplies the two numbers to obtain the area. This is
indirect measurement, for area has been obtained by measuring
lengths. The extension of this idea to volumes is obvious. Thus, even
the very common formulas of geometry, which we owe to the Alex-
andrians and which permit us to measure areas and volumes indi-
rectly by expressing these quantities in terms of readily measured
lengths, represent an immense practical achievement.

But this type of indirect measurement was really child’s play to
the Alexandrians. They were eventually able to measure by indirect
means the radius of the Earth, the diameters of the sun and moon
and the distances to the moon, the sun, the planets, and the stars.
That we can measure such physically inaccessible lengths and do so,
moreover, with an accuracy as great as we wish, seems, at first blush,
incredible. Not only did the Alexandrians transform seeming im-
possibility to actuality, but they did so with a simplicity and a
finality hardly to be anticipated at this date in the march of mathe-
matical ideas.

It was in the second century s.c. that Hipparchus, the greatest
astronomer of the ancient world, created the branch of mathematics
that was so ingeniously applied to the charting of the Earth and
heavens. The basis of Hipparchus” astute method is a simple theorem
of geometry. Before noting the theorem let us recall that two triangles
are similar, by definition, if the angles of one equal, respectively, the
angles of the other. To show that two triangles are similar it is suffi-
cient to show that two angles of one are equal, respectively, to two
angles of the other. The reason is simply that the third angles of the
two triangles must then be equal, for the sum of the angles in any
triangle is 180°. In particular, if we deal with right triangles, since
the right angles of the two triangles are equal, it is sufficient to know
that an acute angle of one equals an acute angle of the other to
conclude that the triangles are similar.

The theorem that Hipparchus applied states that if two triangles
are similar, the ratio of the lengths of any two sides of one triangle
equals the corresponding ratio of the other. Thus if triangles ABC
and A’B’C’ (fig. 11) are similar, for example. then BC/AB equals
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B'C’/A’B’. If triangles ABC and A’B’C’ are right triangles and if
angle 4 equals angle 4’, then, in view of the conclusion in the pre-
ceding paragraph, we know that the triangles are similar. We may
therefore state, with Hipparchus, that the ratio of the side opposite
angle A to the hypotenuse of the triangle must be the same in any
right triangle containing angle A. This ratio of BC to 4B is so imn-
portant that it is given the special name of sine and since the ratio
depends on the size of angle 4 it is written sine 4. Thus, by defini-
tion,
BC  side opposite angle A.

sine 4 = AB ~ hypotenuse
Bl
B
c & <’

Figure 11. Two similar right triangles

The discussion showing that sine A is the same in all right eri-
angles containing angle 4 could be applied to other ratios formed
from the sides of a right triangle containing 4. For example, the
ratios

AC  side adjacent to angle A

cosine 4 = AB ~ hypotenuse

and
BC side apposite angle A
" AC " side adjacent to angle A

are the same in all right triangles containing angle 4.

We may now see how these ratios were used by Hipparchus to
measure the Earth and heavens. The first step is to find the height
of a mountain. Just to simplify the latter problem somewhat we
shall suppose that the mountain has a sheer side, BC in figure 12,
with the point C as the foot of the mountain. We first measure the
readily accessible distance 4C along the ground, and obtain, let us
say, the length ten miles. We also measure angle 4, which, for
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example, might be 17°. Then we may say, in view of the meaning
of tangent A, that

tan N B¢
gent 17 = ZZ}
Since AC is 10,
tangent 17° = B—C,
10

and, by multiplying both sides of this equality by 10, we learn that

BC = 10-tangent 17°.

i7° c
A 0
Figure 12. Calculation of the height of a mountain

If we knew tangent 17° we could immediately obtain BC. Now tan-
gent 17° has the same value in any right triangle containing this
angle. Hence we can choose any convenient triangle for the purpose
of determining this quantity.

A carpenter would obtain this quantity simply. He would construct
a small right triangle having an acute angle of 17°, measure the op-
posite and adjacent sides, and then compute the ratio of the two sides.
A mathematician would be more sophisticated—and more accurate.
Hipparchus, being a mathematician as well as an astronomer, de-
vised a method of calculating these ratios for any right triangle and
listed the results in famous tables which he passed on to his successors
and which are now incorporated in textbooks.

We need not follow the details of Hipparchus’ calculations. What
matters is that it is possible to'calculate these ratios as accurately as
we may wish. From these calculations we know that tangent 17° is
.gog7 to four decimal places. Hence BC, which is 10-tangent 17°,
is g.op7 miles. Thus the height of a mountain can be found without
having to lay a yardstick along it.

Now let us see how this result can be used to measure the size of
the Earth. We should mention first that the educated Greeks believed
the shape of the Earth to be a perfect sphere. Though this conclusion
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was reached through aesthetic and philosophical arguments rather
than by circumnavigation, it was nonetheless firmly held. Hence the
essential quantity to be measured is the radius of the sphere.

To measure this length we can proceed as follows. We ascend a
mountain, say three miles high, and look toward the horizon. We

87° 45'

Figure 13. Calculation of the radius of the earth

then measure with whatever instrument we can command, the angle
between our line of sight and the vertical, angle CAB in figure 13.
This angle would turn out to be approximately 87° 46’. With this
measurement in hand we complete the diagram as shown, wherein
7 is the radius of the Earth. In this figure the radius BC is perpen-
dicular to the line of sight AC, for AC is tangent to the Earth’s sur-
face and, according to a theorem of Euclidean geometry, a radius of
a circle drawn to the point of tangency of a tangent is perpendicular
to that tangent. Now, following Hipparchus, let us note the ratio of
the side opposite our measured angle to the hypotenuse of the right

This

triangle. In the symbols of our diagram this ratio is s
T3

ratio is also sine A4, or sine 87° 46’. Hence

r
sine 87° 46" = .
74 r+3
Since Hipparchus had already calculated the sine ratios, he knew
that sine 87° 46’ is .ggg24 to five decimal places. Hence we see that
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T
99924 = 7 T3

By very simple algebra, such as we all learned to perform in high
school, it is easy to solve this equation for r and to obtain the value
of 3944 miles for the radius of the Earth. The accuracy of this result
can be improved by measuring the angle involved to the order of
seconds.

The reader who found the few lines above tiresome should re-
member that the method described is an alternative to tunneling
down to the center of the Earth and then measuring the radius by
applying a yardstick from the center all the way to the surface.

EARTH
Figure 14. Calculation of the distance from the earth to the moon

And now let us see how Hipparchus found the distance from the
Earth to the moon or, more exactly, from the center of the Earth
to the center of the moon. Our description may be a slight simpli-
fication, but it contains the-essence of Hipparchus’ method. Let us
suppose that the calculation is made at a time when the line from
the center of the Earth to the center of the moon, line 4B in figure
14, cuts the surface of the Earth at a point on the equator. We can
then imagine a line drawn from B to the Earth's surface so that it
just touches the surface, say at C. Now, according to the theorem of
geometry cited above, the line AC of the diagram, which represents
the radius of the Earth drawn to the point of tangency C on the sur-
face, forms a right angle with the tangent at C. The angle CAB of
our figure is the latitude of C. Incidentally, Hipparchus himself had
instituted the system of locating points on the surface of the Farth
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by means of latitude and longitude, the very system used universally
today. Hence Hipparchus knew the latitude of C. He also knew C4,
the radius of the Earth. Hence he could argue that

. AC
cosine 4 = B
A reasonable value for 4 in the diagram above is 89° §’; moreover,
Hipparchus’ tables told him that cosine 89° g = .01658. The dis-
tance AC, the radius of the Earth, was just found to be about gg50
miles. Hence
3950

.01658 = B

By multiplying both sides of this equation by AB and then dividing
both sides by .01658 we obtain

_. _395°

= = 238 .
.01658 235,000

That is, the distance from the center of the Earth to the center of
the moon is about 238,000 miles.

A glance backward will reveal that by starting with a readily meas-
urable distance on the surface of the Earth we were able to calculate
successively the height of a mountain, the radius of the Earth, and
the distance to the moon. With this knowledge and with Hipparchus’
method, we could proceed to calculate the distances to the sun, any
planet, and the stars. In fact, Hipparchus did carry out a great num-
ber of astronomical calculations. The simplicity and, at the same
time, the broad applicability of his trigonometry should be apparent.

The mathematics that Hipparchus created in order to survey the
Earth and heavens has been used since his times to handle numerous
practical problems. Surveyors, navigators, and map-makers employ it
constantly. Indeed, through the power of Hipparchus’ methods and
other mathematical methods not detailed here, the Alexandrian
Greeks set map-making up as a science. Their maps offered the best
knowledge of the Earth up to the time of the great explorations in
the fifteenth and sixteenth centuries. Very fortunately for later gen-
erations the astronomer Ptolemy summarized all of the geographical
knowledge amassed by the ancient world in his Geographia, a work
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in eight volumes. This work gave the latitude and longitude of some
8000 places on the Earth and was the world’s first atlas and gazetteer.

The subject of trigonometry is an excellent example of a branch
of mathematics the investigation of which was motivated by both
practical and intellectual interests—surveying, map-making, and nav-
igation on the one hand, and curiosity about the size of the universe
on the other. With it the Alexandrian mathematicians triangulated
the universe and rendered precise their knowledge about the Earth
and the heavens. They then proceeded to capitalize on this work in
a manner we shall relate in the next chapter.



VI

Nature Acquires Reason

SOCRATES. Very good; let us begin then, Protarchus, by ask-
ing a question.
PROTARCHUS. What question?

SOCRATES. Whether all this which they call the universe is
left to the guidance of unreason and chance medley, or, on
the contrary, as our fathers have declared, ordered and gov-
erned by a marvellous intelligence and wisdom.

PROTARCHUS. Wide asunder are the two assertions, illustrious
Socrates, for that which you were just now saying to me
appears to be blasphemy, but the other assertion, that mind
orders all things, 1s worthy of the aspect of the world. . .

PLATO: Philebus

People who would create must first be willing to dream. Because the
philosophically minded Greeks often allowed their speculations to
lapse into dreams, they were rewarded with one of the greatest pro-
phetic insights that man has ever attained. The vision proved so
extraordinary that it actuated the intellectual life of all thinking
Greeks. For Western civilization the sequel was most significant.

In part, the vision said that nature is rationally ordered; all natural
phenomena follow a precise and unvarying plan. The vision dis-
closed, also, that mind is the supreme power and, therefore, that the
pattern of nature can be rendered intelligible by the application of
mind to the affairs of the universe.

The Greeks projected their dream into reality and became the
first people with the audacity and genius to give reasoned explana-
tions of natural phenomena. The Greek urge to understand had the
excitement of a quest and an exploration. And while they explored
they made maps, such as Fuclidean geometry, so that others might
find their way quickly to the frontiers and help conquer new regions.

74
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Preceding civilizations, notably the Babylonian and Egyptian, had
made untold observations and had obtained many useful, empirical
formuias. But though they must have discovered some evidence of
order in nature, they conceived no embracing theories; and they
scarcely dreamed of design. The complex and varied actions and
reactions in nature concealed from them any indication of plan, or-
der, and law. Nature appeared and remained capricious, mysterious,
and often terrifying. The Greeks thought otherwise. Spurred on by
their desire for knowledge and their love of reason, these protagonists
of the power of the mind were confident that an examination of
nature’s ways would reveal the order inherent in the physical world.

The search for a rational interpretation of nature was actively
carried on in the earliest days of Greek civilization. Typical was the
cosmology of Thales, who argued that everything is ultimately water
and that mist and earth are forms of water. He believed that the uni-
verse was a mass of water with a bubble in it, the bubble being our
world with the Earth floating on the bottom and the rains coming
from the water on top. The heavenly bodies were water in an incan-
descent state; they floated on the water surrounding the bubble.
Whereas to the Egyptians and Babylonians the stars were gods, to
Thales they were ‘steam from a pot.” In offering this theory about
the construction of the universe, Thales took an extremely modern
point of view. He did not maintain that his explanation necessarily
described what literally existed. Rather, he advanced it because it
organized observations into a rational pattern.

Such analyses of natural phenomena seem shallow and childish
compared with the sophistication and relative profundity of modern
scientific theories. Nevertheless, Thales and his Ionian collcagues
progressed far beyond the thinking of preceding civilizations. At the
very least, these men dared to tackle the universe and they refused
any help from gods, spirits, ghosts, devils, angels, or other agents
unacceptable to a rational mind. Their material and objective ex-
planations displaced mythical and supernatural accounts, and their
reasoned approaches discredited the fanciful and uncritical expla-
nations of the poets. Brilliant intuitions fathomed the nature of the
universe and reason defended these insights.

With the advent of the Pythagoreans, the program for rational-
izing nature enlisted the aid of mathematics. The Pythagoreans were
struck by the fact that phenomena which are physically most diverse
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exhibit identical mathematical properties. The moon and a rubber
ball share the same shape and all other properties common to spheres.
Similarly a garbage can and a cask of fine wine may have the same
volume. Is it not apparent, then, that mathematical relations under-
lie diversity and must be the essence of phenomena?

To be specific, the Pythagoreans found this essence in number and
in numerical relations. Number was the first principle in the expla-
nation of nature and was the matter and form of the universe. Said
Philolaus, a famous Pythagorean of the fifth century B.c., ‘Were it
not for number and its nature, nothing that exists would be clear to
anybody either in itself or in its relation to other things. . . You can
observe the power of number exercising itself not only in the affairs
of demons and gods but in all the acts and the thoughts of men in
all handicrafts and music.’

The reduction of music, for example, to simple relationships
among numbers became possible for the Pythagoreans when they dis-
covered two facts: first, that the sound caused by a plucked string
depends on the length of the string; and second, that harmonious
sounds are given off by strings whose lengths are to each other as
the ratios of whole numbers. For example, a harmonious sound is
produced by plucking two equally taut strings, one twice as long as
the other. The musical interval between the two notes is now called
an octave. Another harmonious combination is formed by plucking
two strings whose lengths are in the ratio of g to 2; in this case the
shorter one gives forth a note called the fifth above that given off by
the longer one. In fact, the relative lengths in every harmonious
combination of plucked strings can be expressed as ratios of whole
numbers.

The Pythagoreans also reduced the motions of the planets to num-
ber relations. They believed that bodies moving in space produce
sounds and that a body which moves rapidly gives forth a higher note
than one which moves slowly. Perhaps these ideas were suggested
by the swishing sound of an object whirled on the end of a string.
According to Pythagorean astronomy, the greater the distance of a
planet from the Earth the more rapidly it moved. Hence the sounds
produced by the planets varied with their distances from the Earth
and these sounds all harmonized. But this ‘music of the spheres,” like
all harmony, reduced to no more than number relationships and
hence so did the motions of the planets.
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In addition to these more ‘substantial’ elements of their philos-
ophy, the Pythagoreans attached very interesting affinities or inter
pretations to the individual numbers. The number one they identi-
fied with reason, for reason could produce only a consistent whole;
two was identified with opinion; four with justice because it is the
first number which is the product of equals (to the Pythagoreans
one was not a number in the full sense because unity was opposed
to quantity); five signified marriage because it was the union of the
first odd and first even number; seven was identified with health, and
eight with love and friendship. Because the Pythagoreans thought
of four as four dots arranged in a square and identified four with
justice, the association of the square and justice continues to this day.
The square-shooter is still the man who acts justly.

All the even numbers were regarded as feminine, the odd numbers
as masculine. From these associations it followed that the even num-
bers represented evil and the odd, good. The trouble with the even
numbers was that they permitted bisection into more and more even
numbers as 2 into 1 and 1, 4 into 2 and 2, 8 into 4 and 4, and so on.
The process of continued bisection suggested the infinite, a horrible
thought to the Greeks who preferred the definite and limited. The
odd numbers, on the other hand, prevented the even numbers from
pursuing the bisection process indefinitely; they prevented the even
numbers from going to pieces. Moreover, they themselves resisted
bisection for that led, in the case of an odd number, to vulgar im-
proper fractions.

A number was perfect if it equaled the sum of its divisors, as
6 = 1 + 2 4 8. Two numbers were ‘friendly’ if each was the sum of
the divisors of the other. Thus 220 and 284 were amicable as a check
on the divisors will show. Such numbers were written on pellets and
the latter were eaten as aphrodisiacs. The ideal number was 10 be-
cause for one thing it was the sum of consecutive integers 1, g2, 3,
and 4. And because 10 was ideal, the moving bodies in the heavens
must be 10 in number. The Pythagoreans could readily account for
g of these bodies, for they believed that the Earth, sun, moon, sphere
of stars, and the other 5 planets known at that time moved around
a fixed central fire. They asserted the existence of a tenth moving
body, which they called the counter-Earth. This body was always on
the side of the central fire opposite to the Earth and so it was not
visible. The ideality of 10 also required that every object in the
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universe be describable in terms of 10 pairs of categories such as odd
and even, bounded and unbounded, right and left, one and many,
male and female, and good and evil.

These speculative vagaries of the Pythagoreans are, to a large
extent, idle, unscientific, and useless. Their obsession with the im-
portance of number caused them to build a natural philosophy which
certainly had little correspondence with nature. Unfortunately, some
of this philosophy was passed on to medieval Europe where it was
made sacrosanct by religious mystics. Nevertheless the major thesis
of the Pythagoreans, namely, that nature should be interpreted in
terms of number and number relations, that number is the essence
of reality, dominates modern science. The Pythagorean thesis was
revived and refined in the work of Copernicus, Kepler, Galileo, New-
ton, and their successors, and is represented today by the doctrine
that nature must be studied quantitatively. These relatively modern
scientists adopted several other Pythagorean beliefs, namely, that the
universe is ordered by perfect mathematical laws, that divine reason
is the organizer of nature, and that human reason, in probing nature,
seeks to discern the divine pattern. We shall sce that this philosophy
is to be credited with the success of modern science, and that numer-
ical relations ultimately usurped the favored position that the Greeks
had granted to geometry.

The foremost Pythagorean, next to Pythagoras, was Plato, who
shared the belief that the reality and intelligibility of the physical
world could be comprehended only through mathematics, for ‘God
eternally geometrizes.” Plato went further than most Pythagoreans.
He wished not merely to understand nature through mathematics
but to transcend nature in order to comprehend the ideal, mathemat-
ically organized world that he believed to be the true reality. The
sensible, the impermanent, and the imperfect were to be replaced by
the abstract, eternal, and perfect. He hoped that a few penetrating
glances at the physical world would supply basic truths which reason,
unaided by further observation, could then develop. From that point
on, nature would be replaced entirely by mathematics. Indeed, he
criticized the Pythagoreans because they investigated the numbers
of the harmonies which are heard but never reached the natural har-
monies of numbers themselves. The mere study of sounds as such
he declared to be useless, while reflection on harmonious numbers,
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if sought after with a view to the beautiful and the good, was of the
highest value.

Plato’s attitude toward astronomy illustrates his attitude toward
all natural science. According to Plato, true astronomy is not con-
cerned with the movements of the visible, heavenly bodies. The ar-
rangement of the stars in the heavens and their apparent movements
are indeed wonderful and beautiful to behold, but mere observation
and explanation of the motions fall far short of true astronomy.
Before we can attain to the latter we ‘must leave the heavens alone,’
for true astronomy deals with the laws of motion of true stars in a
mathematical heaven of which the visible heaven is but an imperfect
expression. He encouraged devotion to a theoretical astronomy whose
problems please the mind and not the eye. Navigation, the calen-
dar, and the measurement of time were evidently alien to Plato’s
astronomy.

There is no doubt that Plato’s unwillingness to observe and ex-
periment hindered the development of Greek science and placed too
much reliance on the power of the mind to grasp fundamental truths
and deduce logical consequences. Nevertheless, the good that resulted
from his conception of natural science was of inestimable value. It
produced the first master plan of the same heavens that he preferred
to leave alone.

The Greeks of this period had observed what anyone can see who
cares to chart the motions of the planets. As seen from the Earth their
progress in the sky is disorderly with no apparent regulative rhyme
or reason. They advance and retrogress. Indeed these vagabonds of
the sky (the word planet means ‘wanderer’ in Greek) seemingly re-
fuse to follow any orderly course.

Now it is one thing to observe and carefully chart the motions of
the planets as the Egyptians and Babylonians did for centuries. These
peoples were merely observers. It is quite another, and indeed a
major step forward, to ask for some unifying theory of the motions
of the heavenly bodies that will reveal a plan underlying the seeming
irregularity. This is the problem Plato set before the Academy, that
is, to devise a mathematical scheme which, though calling for sys-
tematic motions of the planets, would account for the disorderly
motions we see. He described his problem in a now famous phrase
as ‘saving the appearances.’
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The answer to Plato’s problem given by Eudoxus, a pupil of Plato,
a master in his own right and one of the foremost Greek mathema-
ticians, is the first major astronomical theory known to history and
a decided advance in the program of rationalizing nature.

Eudoxus’ scheme employed a series of concentric spheres whose
center is the immovable Earth. To account for the complex motion
of any one body Eudoxus supposed first that it was attached to a
sphere which rotated at constant speed about some axis through the
Earth, Thus the planet P (fig. 15) is attached to the sphere whose

Figure 15. Sketch of the Eudoxian scheme

cross section is AMB, and this sphere rotates about the axis 4B.
Eudoxus next imagined this axis 4B to project beyond 4 and B until
it terminated on a second sphere, at C and D in figure 15, where it
was regarded as rigidly attached. This second sphere was supposed
to rotate on an axis of its own, GF in figure 15, and to carry the first
axis and rotating sphere along. Since two spheres were not sufficient
to describe the motion of any heavenly body, Eudoxus presumed that
the axis of the second sphere projected beyond it to terminate on a
third sphere, which in turn rotated about an axis of its own. In the
cases of the planets, Eudoxus used four such spheres for each. The
speeds of rotation and the radii of these spheres were fitted by
Eudoxus to the observed motions of the planets.

It is, of course, difficult to visualize the path any body would take
under the combined motions of two or three spheres. The very com-
plex motions that do result were, however, precisely what Eudoxus
needed to describe the paths of the five planets, the sun, moon, and
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the stars as seen from the Earth. A total of twenty-seven spheres suf-
ficed for the whole system.

Eudoxus’ scheme for describing and predicting the motions of the
seemingly errant heavenly bodies was, of course, ingenious and it
impressed the Greeks immensely. It instituted a mathematical order
in nature and, at the same time, it evidenced the power of the human
mind to devise such an order. It is also worth noticing that Eudoxus
regarded his scheme as a purely mathematical one. He attached no
physical meaning to the spheres. They were fictions, and the whole
plan just a theory which accounted for the observed motions.

The Eudoxian construction was not the last word in Greek as-
tronomy. We shall see shortly that it was superseded by a superior
theory. But before we leave the classical period of Greek culture we
should mention other weighty evidence that the age had amassed to
establish the rationality of nature. The classical Greek did not have
to peer into space to conclude that nature is mathematically designed.
He had but to reflect on the significance of Euclidean geometry.

Euclid started his geometry with ten axioms. Some of these, such
as that equals added to equals give equals, are immediately accept-
able. Others, such as that two points may be joined by one and only
one straight line, were suggested by observation of the physical world.
Once these axioms were selected, however, the theorems were de-
duced by the action of the mind alone. Each and every one of the
hundreds of theorems contained in the Elements could have been
deduced by a Euclid sitting with blindfolded eyes in an ivory tower.
Nevertheless, when any one of these theorems was applied to a phys-
ical situation, it was found that the theorem described the situation
perfectly. The theorem gave knowledge as precise and as reliable as
if it had been inferred directly from the situation. What should the
Greeks have concluded from the fact that a theorem, deduced by
pure reasoning involving hundreds of successive deductions from the
axioms, applied perfectly? Did it not prove that nature was designed
to accord with a rational plan, that nature conformed to a whole
body of reasoned knowledge? Was not this overwhelming evidence
of design?

The Greeks studied numerous other physical phenomena and
found evidence of design and of the mathematical siructure of nature.
An example from the field of optics will illustrate such successes.

Euclid discovered that the angle at which a light ray strikes a
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mirror equals the angle at which it is reflected; that is, angle 1 =
angle 2 in figure 16. This fact, often described by the statement that
the angle of incidence equals the angle of reflection, reveals law and
mathematical design in nature’s behavior.

There is a second mathematical law involved in this phenomenon
of optics. We noticed in another connection that if 4 and B are any
two points on one side of a line, then of all the paths leading from
point 4 to the line and then to point B, the shortest path is by way
of the point P such that the two line segments AP and PB make equal
angles with the line. And this shortest path is exactly the one a light

B

(1 2)

P MIRROR
Figure 16. The angle of incidence equals the angle of reflection

ray takes. Apparently nature is well acquainted with geometry and
employs it to full advantage.

If the Greeks of the classical period had excellent evidence of the
mathematical design of nature, then the Alexandrian Greeks could,
with all justification, assert that they had indisputable proof. The
supreme achievement of these people was the creation of the most
accurate and most influential astronomical theory of ancient times.
The central figure in this work was Hipparchus, the man who dem-
onstrated the use of indirect measurement to calculate the sizes and
distances of the heavenly bodies. In the course of his astronomical
investigations, he improved instruments for observation, discovered
the precession of the equinoxes, determined the angle of the ecliptic,
measured irregularities in the motion of the moon, revised earlier
estimates of the length of the year (Hipparchus estimated the length
of the solar year to be 365 days, 5 hours, and 55 minutes, or about
614 minutes too much), and catalogued about a thousand stars. These
relatively minor contributions were climaxed by the construction of
a complete astronomical system.
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Hipparchus recognized that the scheme of Eudoxus, which sup-
posed that the heavenly bodies were attached to rotating spheres with
centers at the Earth’s center, did not account for many facts observed
by other Greeks and by Hipparchus himself. The Eudoxian theory
contained significant errors especially in the motions of Mars and
Venus. Instead of Eudoxus’ scheme, Hipparchus supposed that a
planet P (fig. 1) moved in a circle at a constant speed and that the
center of this circle, Q, moved at constant speed on another circle
with center at the Earth. By properly selecting the radii of the two
circles and the speeds of Q and P, he was able to get an accurate
description of the motion of many planets. The motion of a planet,
according to this scheme, is like the motion of the moon according
to modern astronomy. The moon revolves around the Earth at the

P

EPICYCLE

DEFERENT

Figure 17. Sketch of Hipparchus’ scheme

same time that the Earth revolves around the sun. The motion of
the moon around the sun is then like the motion of a planet around
the Earth in Hipparchus’ system.

In the cases of some heavenly bodies Hipparchus found it neces-
sary to use three or four circles, one moving on another. That is, a
planet P moved in a circle about the mathematical point Q, while
Q moved in a circle about the point R, and R moved about the
Earth; again, each object or point traveled at its own constant speed.
In still other cases Hipparchus had to suppose that the center of the
innermost circle or deferent was not at, but near, the center of the
Earth. Motion in accordance with this latter geometrical construction
was called eccentric whereas when the center of the deferent was at
the Earth, the motion was called epicyclic. By the use of both types
and by the proper choice of radii and speeds of the circles involved,
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Hipparchus was able to describe quite well the motions of the moon,
sun, and planets. With this theory an eclipse of the moon could be
predicted to within an hour or two, though solar eclipses were pre-
dicted less accurately,

It is worth mentioning that from the modern point of view Hip-
parchus was taking a step backward, for about a century before his
time another famous Alexandrian, Aristarchus, had advanced the
theory that all the planets move around the sun. But observations
made over a period of one hundred and fifty years by the observatory
at Alexandria along with older Babylonian records convinced Hip-
parchus of what we know today, that a heliocentric theory with plan-
ets moving in circles about the sun will not do.

Instead of pursuing and perhaps improving on Aristarchus’ idea
Hipparchus dismissed it as too speculative. Others rejected Aristar-
chus’ idea because they deemed it impious to identify the corruptible
matter of the Farth with the incorruptible heavenly bodies by re-
garding the Earth as a planet. This distinction between the Earth
and the other heavenly bodies was quite solidly established in Greek
thought and was defended, though not dogmatically, even by Aris-
totle. The distinction became a scientific doctrine in Christian the-
ology and the subsequent elimination of this falsity was one of the
triumphs of modern mathematics and science.

The development of Greek astronomical theory reached its culmi-
nation in the work of Claudius Ptolemy, who was a member of the
royal family of mathematicians, if not the political rulers of Egypt.
Indeed, Hipparchus’ work is known to us because it survived in
Ptolemy’s Almagest, a work almost as important as Euclid’s for its
influence on succeeding generations. In its mathematical content,
the Almagest brought Greek trigonometry into the definitive form
it was to retain for more than a thousand years. And in the field of
astronomy it offered a complete exposition of the geocentric theory
of epicycles and eccentrics that has come to be known as the Ptol-
emaic theory. So accurate was it quantitatively and so long was it
accepted that people were lured into regarding it as an absolute truth.

This theory is the final Greek answer to Plato’s problem of ration-
alizing the appearances of the heavens and is the first truly great
scientific synthesis. With Ptolemy’s completion of Hipparchus’ work
the evidence for design in the universe was complete to the tenth
decimal place. The universe was rational and the principles that de-
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termined its motions were mathematical. This astronomical theory,
transformed during the Renaissance by Copernicus and Kepler and
refounded and refined by Newton, provided the chief evidence for
the most important doctrine of modern science—the uniformity and
invariability of nature.

More immediate use of the theory was made by a totally different
group of thinkers. Since the Ptolemaic system made the Earth the
center of the universe, it was quite natural for Christian theology,
proceeding along rational lines, to advance the thesis that man was
the most important creation of God and that man’s welfare was the
most weighty of God’s concerns. This theological conclusion was
made all important and the mathematical evidence on which it rested
was subordinated. Nevertheless, as the Church clearly recognized,
the Christian doctrine that man was the most important object in
the universe, indeed the one for whom the universe was specially
designed, rested heavily on Ptolemaic theory.

The Greeks did not complete the rationalization of nature. We
are still engaged in that task today. But they left monuments in as-
tronomy, mechanics,* optics, and the study of space and figures in
space. In each of these achievements mathematics was either the
essence or the essential tool.

Unfortunately, the intellectual life of the Greeks was cut short by
political events beyond the control of mathematicians and philos-
ophers. During the period when Alexandria flourished the Roman
Juggernaut rolled over the Italian peninsula and then began to at-
tack other lands bordering the Mediterranean. Through intervention
in the family strife between Cleopatra, the last of the Ptolemy dyn-
asty, and her brother, Caesar managed to secure a hold on Egypt.
He then attempted to destroy the Egyptian fleet riding at anchor in
the harbor by setting fire to it. As a result, there began the most
tragic holocaust in the long history of man’s battle against barbarism.
The fire swept in from the sea and destroyed the great library at
Alexandria. Two and a half centuries of book collecting and a half
a million manuscripts that represented the bright pageant of ancient
culture were wiped out. The Romans withdrew only to return at the
death of Cleopatra in the year g1 B.c., and from that time on its inter-
ference with, and domination of, the Museum at Alexandria proved
more and more destructive to the culture there.

* See Chapter XIII
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The fire at Alexandria was symbolic of the Roman contempt for
abstract knowledge. The history of the Romans co-extends with that
of the Greeks, but we should never know the Romans existed from
reading even a comprehensive history of mathematics. The Romans
were practical people and they boasted of their practicality. They
undertook and completed vast engineering projects such as viaducts,
magnificent roads which survive even today, bridges, public build-
ings, and land surveys, but they refused to consider any ideas over
and above what were required for the particular concrete applica-
tions they were making at the moment. A problem taken from one
of their texts illustrates their general attitude. The problem asks for
a method of finding the width of a river when the enemy is already
on the opposite bank. Cicero admitted that because ‘the Greeks held
the geometer in the highest honor, accordingly, nothing made more
brilliant progress among them than mathematics.” He boasted, how-
ever, that ‘we have established as the limit of this art its usefulness
in measuring and counting.’

Just as the mathematics of the Greeks was seen to be related to the
ideality of their art, so the practical interests of the Roman people
are manifested in their concrete and rather mundane art. Roman art
was purposive, for example, didactic or commemorative, and beauty
descended to decoration and ornamentation. The sculptures and por-
traits were always of individuals and were intended either to honor
or deify. Augustus, for example, was sculptured as a soldier with all
his armor and his medals (plate 111), and the little child next to him
symbolizes the fertility of Rome. Gone was the contemplation of the
ideal and the devotion to perfectly proportioned gods and human
figures. In architecture, Rome is represented best by its public build-
ings, such as baths, all of which served a useful purpose.

The shortsightedness of the Romans produced a one-sided, imita-
tive, and second-rate culture. For several centuries they were able
to supply the deficiencies of inspiration and original thought by re-
lying upon the Greeks. When Augustus undertook a survey of the
empire he called in specialists from Alexandria, and when Julius
Caesar undertook to reform the calendar, he also called in an Alex-
andrian. When the wells of learning had almost dried up, the Ro-
mans began to realize the error of adding statues to a fountain while
neglecting the water supply. But they were too late.

The insignificance of Roman achievements in the fields of math-
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ematics, science, philosophy, and many of the arts is the best answey
to those ‘practical’ people who condemn abstract thought that is not
motivated by utilitarianism. Certainly one lesson to draw from the
history of the Romans is that people who scorn the highly theoretical
work of mathematicians and scientists and decry its uselessness are
ignorant of the manner in which practical and impertant develop-
ments have arisen. Indeed, any large corporation knows that today
it must spend millions of dollars and years of time on research which
offers no promise of immediate usefulness in order to produce new
ideas and techniques.

Roman rule of the Greek civilization was destructive for another
reason. It enslaved millions of people and kept millions of others
subject. Roman officialdom suppressed all social and economic bet-
terment and held education to a minimum. At the same time, enor-
mous wealth was drawn from the subject countries by taxation and
taken to Rome. The lot of the multitudes became unbearable. Among
these miserable people the Christian appeal with its emphasis on
ethics, brotherhood, and rewards in an after-life took hold readily
and drew thousands and eventually millions away from the Greek
culture. Bloody street riots between ‘heathen’ and Christian became
common. Unfortunately all Greek learning was identified with pa-
ganism and, therefore, severely attacked. The scholars at the Museum
in Alexandria were persecuted and driven from the city.

The fate of Hypatia, the last mathematician of the Alexandrian
school, dramatizes the end of the era. Because she refused to abandon
her Greek religion she was set upon by an enraged mob of Christians
and torn limb from limb in the streets of Alexandria. Hypatia’s fate
was also that of Greek thought.

The final blow to the Museum at Alexandria, which destroyed as
it were the cover of the great Book of the Ancients, whose pages had
already been scattered to the winds, was the burning of the Museum
by the Moslems who conquered the city in the year 640. The entire
Museum and the remaining manuscripts rescued from other enemies
of Hellenistic enlightenment were destroyed on the grounds that it
the scrolls contained anything contrary to the writings of Moham-
med they were wrong, and if they did not, they were superfluous.

Though the Museum was destroyed and the scholars dispersed,
Greek culture did survive and eventually re-emerged to help mold
Western civilization. Europe did ultimately learn from the Greeks
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the potential in human reason, as well as some of its finest products.
Europe also inherited the mathematical evidence of design in na-
ture and the confidence to apply reason to all the affairs of man.
Western civilization was born when the spirit of reason took hold of
man, and this civilization has advanced or retrogressed in accerd-
ance with the varying strength of that spirit.



VI

Interlude

Solicit not thy thoughts with matters hid,
Leave them to God, Him serve and fear.

JOHN MILTON

The Earth, wrote a widely traveled merchant of sixth-century Alex-
andria, is flat. The inhabited portion has the shape of a rectangle
whose length is double its breadth. Surrounding this inhabited por-
tion is water, which in turn is surrounded by more earth. In the
north is a high conical-shaped mountain around which the sun and
moon revolve. At night the sun is behind the mountain; by day, of
course, it is in front. The sky is glued to the edges of the outer earth.
Above the sky is heaven which is divided into two floors, the upper
one for the blessed and God and the lower one for the angels minis-
tering to man.

So wrote a man who breathed the same air as did Euclid, Archi-
medes, Hipparchus, and Ptolemy. This merchant, Cosmas by name,
who later became a monk, did not learn these facts about the uni-
verse through his travels. Rather, he said, the topography of the uni-
verse is established by demonstration from Divine Scriptures, which
it is not lawful for a Christian to doubt. In his work Topographia
Christiana, which was very popular among both the educated and
ignorant until the twelfth century, Cosmas elaborated on this cos-
mography. Since the Bible tells us that man lives on the ‘face of the
earth’ there can be no antipodes. In fact, if there were antipodes the
sky would have to surround the Earth whereas the Bible says the
Earth is firmly fixed on its foundations.

Later thinkers made some very important improvements on the
cosmology of Cosmas. At the center of the universe was, of course,
the fixed Earth. Above the Earth were the moon, planets, and sun
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each attached to one sphere. These eight spheres rotated around the
Earth in circular motion, the only kind possible for heavenly objects.
The spheres and heavenly bodies were made of tangible but incor-
ruptible matter which was not subject to the physical laws of matter
on Earth. Moreover, these heavenly bodies remained at a fixed dis-
tance from Earth, for the matter of which they were composed found
itself congenially located where it was. There were, however, two
other spheres above these eight. The ninth one, which carried no
planet or star, was the prime mover of itself and the other eight
spheres This ninth sphere revolved faster than the others to com-
plete its 24-hour journey around the Earth, for the spirits that moved
it, being next to heaven, the tenth sphere, were more ardent than
those moving the other eight. The tenth sphere was at rest and was
inhabited by the beings Cosmas had already described.

A little more was gleaned about the Earth itself. The land ex-
tended over what is roughly modern Europe and the Near East, and
Jerusalem was the center of the habitable world. Inside the Earth
was hell whose shape was that of a funnel with sinners arranged in
rows running around the sloping wall. Satan resided at the very
bottom. On the Earth was the still flourishing Garden of Eden, but
this area was surrounded, unfortunately, by a wall of fire and was
therefore inaccessible. The Earth contained both wondrous and
monstrous creatures besides man. Most important were the angels
and the devil with his demon assistants. Among mortal creatures
similar to man were the satyrs; these had crooked noses, horns in
their foreheads, and goat-like feet. It was readily ascertained that
there were many varieties of satyrs. Some were headless; others, one-
eyed; others possessed enormous ears; and still others were one-
footed. The seas rivaled the earth in their marvels, even infested as
it was with dragons who habitually fought elephants.

Nature was indeed marvelous and wondrous to behold. Of course,
no one beheld it for there was no need to. Did not Saint Augustine
say: “‘Whatever knowledge man has acquired outside Holy Writ, if
it be harmful it is there condemned; if it be wholesome, it is there
contained.” Hence man had only to read the Scriptures and the writ-
ings of the early fathers of the Church in order to secure all the
knowledge he should have. Biblical affirmations similarly answered
the fundamental question of why the physical world, the animals,
and the plants existed. These were created to serve man. The plants
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and animals furnished him with food just as the rain nourished his
crops. Man was the center of the universe not merely geographically
but also in terms of ultimate purpose and design. Though the world
of nature existed to serve man, the study of nature was to be avoided
and nature itself even dreaded because Satan ruled the Earth and
his cohorts were omnipresent. Science was actually sinful, and the
knowledge obtained thereby was purchased at the price of eternal
damnation.

All of nature served man, but man existed only to die and be
reunited with God. Life on this Earth was of no real importance;
only the after-life of the spirit mattered. Man had therefore to escape
from this foul Earth into the divine empyrean. He had to wrest his
soul from a stubborn flesh guilty of original sin by divesting himself
of all earthly concerns and attachments. Participation in the bounty
of nature, food, clothing, and sex had to be severely restricted, for
these tainted the soul. Through these measures medieval man, cer-
tain of his sins and doubtful of salvation, prepared for an after-life,
and might perhaps succeed in winning divine grace. This need to
purify the soul by blotting out nature from man’s thoughts and
senses introduced a new dichotomy, an unending warfare between
flesh and spirit, the world and God.

This account of the nature of man and his universe is a sample
of the learning that was widespread toward the end of the Alexan-
drian period and during a good part of the ensuing medieval period.
For reasons mentioned in the preceding chapter, the Alexandrian
Greek civilization had degenerated rapidly. The late Alexandrian
thinkers corrupted rather than improved their intellectual heritage.
They neglected the sciences and mathematics, exhausted themselves
in metaphysical disputes, and sought to reconcile Plato and Aris-
totle on subjects about which both philosophers were ignorant. Un-
der the rising influence of Christianity, the Alexandrians deemed it
important to explore the invisible world, to seek methods of free-
ing the soul from the body, and to discourse with demons and spirits.
Their accomplishment was to convert philosophy into magic.

The decline in Greek and Roman learning was accelerated by the
Church’s battle against paganism. The Greek and Latin master-
pieces contained a mythology that had to be erased from people’s
minds, and a morality opposed to Christian ethics. Also, the Greek
and Roman emphasis on life in this world was regarded as misguided
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at the very least. What do a physical life, health, science, literature,
and philosophy amount to compared with salvation of the soul?
Why read the poets when the precepts of the Gospel should be pon-
dered? Why make life on Earth agreeable and comfortable when it
is but an insignificant prelude to eternal life elsewhere? Why seek
to answer questions about natural phenomena when the nature of
God and the relation of the human soul to God are yet to be ex-
plored and understood? It was but a step to the conclusion that all
Greek and Roman learning was impious and heretical. Thus the
opposition of the Church to paganism and its ideals fostered an anti-
classical attitude throughout the Christian domains and absorbed all
intellectual interests and energies in theological questions.

The region in which knowledge and learning had reached their
highest peak and then dropped to their nadir embraced only those
countries surrounding the Mediterranean Sea. Thus far, we should
notice, central and northern Europe has played no role. What was
the state of affairs in England, France, Germany, and other coun-
tries? How were they linked to the civilizations of Greece and Rome
and how did they come to inherit the riches of Greek thought?

The Germanic tribes that inhabited Europe in the early centuries
of our era, the forefathers of most Americans, were still barbarians.
They lived in ignorance and poverty, sometimes euphemistically
called virtuous simplicity. Industry was unknown. Trade was effected
through barter and supplemented by plundering other tribes and
more civilized regions. The political organization of each tribe was
primitive and was headed by a valorous warrior. Political bonds were
supplemented by religious ones. All these tribes worshipped the
Sun, Moon, Fire, the Farth, and special deities who governed the
daily affairs of life. Like most primitive peoples the Germanic tribes
believed in divination and in human sacrifices to the gods.

An account of the learning, arts, and sciences of the Germanic
tribes is readily given. There was nothing. These peoples were en-
tirely unacquainted with the use of letters. Because writing was
unknown it was impossible for any generation to pass on to its suc-
cessors an adequate record of its discoveries, creations, or experi-
ences. The oral transmission of knowledge may magnify trivial ex-
ploits into legends and cast a shadow of truth over fancies and super-
stitions but it does not promote the arts and sciences.

The barbarians were gradually civilized. The first major influence
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was exerted by the Romans who conquered portions of Europe and
imposed some of their customs and institutions on the conguered
areas. When the Empire collapsed the Church, the only remaining
powerful organization in Europe, took control. In order to Chris-
tianize the heathens the Church introduced and supported schools,
organized parishes, and supplied able leaders. By these means the
barbarians became acquainted with writing, political institutions,
law, ethics, and, of course, the Christian religion. Thus Europe re-
ceived the legacy of Rome.

A people unacquainted with the rudiments of arithmetic could
hardly be expected to advance mathematics. Actually history has no
surprise for us in this instance. In no one of the civilizations that
have contributed to our modern one did mathematical learning exist
on as low a level as it did in medieval Furope. From the years 500
to 1400 there was no mathematician of note in the whole Christian
world.

The progress that was made during this period was contributed
by the Hindus and Arabs. We have already had occasion to see how
the Hindus applied the Babylonian principle of place value to base
ten and converted the Babylonian separation symbol into a full-
fledged zero. In so far as history can ascertain the Hindus were en-
tirely original in creating one other idea which proved immensely
important later on. This was the concept of negative numbers. Cor-
responding to each number such as 5, they introduced a new number
-5 and called the old numbers positive to distinguish them from the
new, negative ones. The Hindus showed, too, that these new num-
bers could be as useful as positive numbers by employing them to
represent debts. In fact, they formulated the arithmetic operations
on negative numbers with this application in mind.

These and other Hindu contributions were acquired by the Arabs
who transmitted them to Europeans. The ideas were not absorbed
into the body of mathematical learning, however, until well into the
seventeenth century. The European universities of the medieval
period offered only arithmetic and geometry, theoretical arithmetic
consisting largely of simple calculations and complex superstitions.
The geometry was confined pretty much to the first three books of
Euclid, candidates for the master’s degree being required to know
no more. The farthest stage that was reached in some universities
was the very elementary theorem that the base angles of an isosceles
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triangle are equal. A modicum of mathematics was also involved in
the other two subjects of the quadrivium, these being music and
astronomy. All in all, a learned European mathematician of a thou-
sand years ago knew far less than any elementary-school graduate
does today.

Yet even in this low state of civilization mathematics played a
part. One role of mathematics, though not one always in favor with
the Church, was to make astrological forecasts. In fact, early in the
medieval period the word mathematics as distinguished from geom-
etry meant astrology and professors of astrology were called mathe-
maticii. At that time, astrology was in disfavor with the Roman em-
perors also, and so we find laws such as the Roman Code of Mathe-
matics and Evil Deeds, which damned and forbade the art of mathe-
matics. Later Roman and Christian emperors, though banishing
astrologers from their kingdoms, employed them in their own courts
as influential advisors. If there was anything in this business of fore-
telling the future, the rulers were not going to overlook it; neither
were they going to let anyone else get hold of that knowledge.

Despite the moral and legal condemnation of astrology the sub-
ject flourished because, from Alexandrian times on, the great physi-
cians, including Galen, believed that they could decide the proper
medical treatments by consulting the stars. On the basis of true and
spurious Arabic translations of Aristotle it was believed that the
regular, circular motions of the stars controlled the ordered course
of nature such as the seasons, night and day, and growth and decay.
The planets, on the other hand, errant in their movements when
viewed from the Earth, governed the variable and indeterminate life
of man. Each planet influenced a particular organ of the body. Mars
presided over the bile, blood, and kidneys; Mercury ruled the liver;
and Venus ruled the genital organs. Fach zodiacal sign governed
some one region of the body such as the head, neck, shoulders, and
arms. The appearances of the planets among the constellations of
stars controlled human fortunes. And so mathematicians and physi-
cians earnestly studied the motions of the stars and the planets and
attempted to correlate their positions in the sky with the behavior
of the human body and with human events.

So much knowledge of mathematics was required for this purpose
that physicians had to become learned in the field. In fact, they were
astrologers and mathematicians far more than they were students of
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the human body. For several hundred years the words physician and
algebraist were practically synonymous. When, for example, Samson
Carasco is thrown from his horse in Don Quixote, an algebrista is
summoned to bind up his wounds. The medieval universities ac-
tually taught medical students the use of mathematics in astrology,
the most famous of such places being Bologna, which had a school
of Mathematics and Medicine as early as the twelfth century. Even
Galileo lectured to medical students on astronomy so that they might
apply it to astrology.

It is clear that in the medieval period astrology was not regarded
as a superstition to be indulged in by the stupid or the naive. It was
a science whose principles were as seriously accepted as were Coper-
nican astronomy and the law of gravitation in the nineteenth cen-
tury. Roger Bacon, Cardan, and Kepler subscribed to it and used
their scientific and mathematical knowledge in its service. The sci-
ence of astrology has today degenerated to syndicated ‘Lucky Day’
columns in newspapers, to birthday-month horoscope reports dis-
pensed in the five-and-ten-cent stores, and to the bargain subway
scales which offer a person his exact weight and future for the same
penny. The science of yesterday is the superstition of today.

To a modern man the Church's interest in mathematics is
far more understandable. In the first place, astronomy, geometry,
and arithmetic were needed to keep the calendar. It was especially
important to know the date of the Easter holiday. Every monastery
in Europe had at least one monk who could do this work.

Mathematics was equally valuable to the Church as a preparation
for theology. All that Plato and other Greeks of the Classical Age
had found in mathematics as a preparation for philosophy, the
Church accepted, merely substituting theology for philosophy. It
was careful to state that not too much mathematics was needed for
this purpose. Just so much was good for the mind, and no more.
This interest in reasoning on the part of theologians who neverthe-
less accepted so much on faith and who appealed to the Scriptures
or to the fathers of the Church as the arbiters of truth warrants a
little examination.

The Greeks had many gods and no theology. The medieval period
had one God and a great deal of theology. Early in the medieval
period faith was indeed almost the sole support of that theology.
Saint Augustine said: let us believe in order that we may know.
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However, as more and more Church fathers propounded doctrines
and as scholars seeking to understand these doctrines faced the prob-
lem of reconciling opposing or conflicting statements, reason was
employed to effect the necessary reconciliations. Reasoning also forti-
fied faith with true argument, dialectic, and explanation. Reason
similarly demonstrated the accord between systems of philosophy
and Christian doctrines and between observed facts and Christian
renditions.

Rather late in the medieval period, reason began to supplant faith
as the chief support of Christian theology. This movement was stim-
ulated by the translation into Latin from Arabic of numerous Greek
manuscripts. In particular, Aristotle’s immense learning and his
logic became known. Because Christian theology had already in-
corporated some Aristotelianism, the Church scholars could not
afford to ignore the vast body of knowledge now made available.
The Church thereupon faced the task of reconciling Aristotelianism
and Catholic theology and of harmonizing metaphysics with revela-
tion. The possibilities of a thoroughly rational defense of Christian-
ity appealed to the Scholastics, of whom Saint Thomas Aquinas is
the most noted. Aquinas undertook to provide a firm logical struc-
ture for theology and to combine Catholic doctrine and Aristotelian
philosophy in one rational system. The result of his efforts, the
Summa Theologiae, affords the most comprehensive and thorough
exposition of Catholic philosophy ever constructed, while the or-
ganization of his material earned for his work the title of the
‘spiritual Euclid.

This brief glance at the rational interests of Catholic theologians,
though it does not do justice to the high intellectual caliber of their
works, may make clear why the Church kept alive at least a modicum
of mathematics during the Middle Ages. There is, however, a more
vital relation between mathematics and medieval theology. We have
already indicated that the Church had a philosophy of nature. This
philosophy asserted, first of all, that nature was designed by God,
designed in fact to serve man. Every event, every being, served a
purpose. It was a second tenet of this philosophy that nature was
intelligible to man. God’s ways and God’s purposes could be under-
stood if man but searched hard enough. The understanding would
come not from the observation of nature, but from a proper study
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of the Scriptures, the word of God. Moreover, the Church urged its
subjects to seek this understanding of God’s purposes; the proper
study of mankind was God. The average man might not attain com-
plete comprehension—the ways of God are mysterious to some mor-
tals—but meaning, reason, and purpose were there. ‘Just are the
ways of God and justifiable to men.’

Thus the late medieval scholars, the Scholastics in particular, not
only provided the rational atmosphere in which modern mathe-
matics and science were born, but they infused the great thinkers of
the Renaissance with the belief that nature was the creation of God
and that God's ways could be understood. It was this fundamental
article of faith that dominated and inspired the Renaissance mathe-
maticians and scientists. It was this faith that sustained the patient,
tireless, arduous, and difficult researches of Copernicus, Brahe,
Kepler, Galileo, Huygens, and Newton. True, these men abandoned
the Scriptures and returned to Euclid for their premises and to the
observation of nature for their purely scientific data, but they sought,
for the most part, to do no more than to understand God’s marvel-
ous design. They were, and remained, orthodox adherents of the
Christian religions. It is an irony of history that their researches
produced laws which clashed with Church doctrines and that these
researches ultimately undermined the Church’s domination of
thought.

We cannot dismiss the medieval period without asking why it
failed to advance mathematics at least during the later years. In
answering this question we are inevitably drawn to link and contrast
the medieval civilization with the equally barren Roman era. It
would appear that the Roman civilization was unproductive in
mathematics because it was too much concerned with practical re-
sults to see farther than its nose. The medieval period, on the other
hand, was unproductive because it was not concerned with the
ctvitas mundi but, rather, with the civitas dei and with preparation
for the latter world. One civilization was earth-bound, the other,
heaven-bound. The practicality of the Romans bred sterility whereas
the mysticism of the Church argued, in effect, for the complete
neglect of nature, and its dogmatism confined the intellect and im-
peded the creative spirit. There is sufficient historical evidence to
show that mathematics cannot bloom in either of these climates.
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It was true in the Greek period, and we shall shortly see it to be true
again, that mathematics can flourish best in a civilization willing to
ally itself with the world of nature and, at the same time; to permit
the mind unlimited freedom of thought whether or not it promises
immediate solutions of the problems of man and his universe.



VI

Renewal of the Mathematical Spirit

If you do not rest on the good foundation of nature, you
will labour with little honor and less profit.

LEONARDO DA VINCI

Very much ignored as a fascinating and influential figure of the
Renaissance is Jerome Cardan. In his Book of My Life, which is
comparable to Cellini's Autobiography and which makes Cellini ap-
pear as a saint and recluse by comparison, Cardan candidly revealed
the most intimate and glowing details of his life and of his times.

The career of this extraordinary rogue and scholar started adven-
turously, he said in his confessions, when his mother tried and failed
to induce an abortion. The illegitimate and sickly child was born
in Milan in the year 1501. He described himself as endowed at birth
with only misery and scorn. Rather early in life he prepared himself
for the numerous careers he was to follow—those of mathematician,
physician, metaphysician, cheat, gambler, murderer, and adventurer.
Despite a wretched boyhood, many maladies, chronic illnesses, and
extreme poverty, he was finally graduated in medicine from the Uni-
versity of Pavia. During his first forty years, poverty continued to
stalk him; a physical disability prevented him for a long time from
satisfying his strong desires for the pleasures of love; and illnesses
continued to rob him of vigor. As if to vent his wrath on life he
cheated at games, was vindictive and consciously cruel in his speech,
and boasted of his superiority over his contemporaries.

During most of his life he practiced medicine and debauchery.
In his spare time he produced some of the best mathematics of the
Renaissance. His rascality expressed itself in this activity also, for
the most famous result which appeared in his Ars Magna, his great-
est mathematical work, was created by another mathematician and
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published by Cardan without permission. During many years of his
life he held professorships of mathematics and medicine in several
Italian universities. His last years were spent as an astrologer in the
papal court. Toward the end of his life he found that despite his
infamies, he had managed to acquire a grandson, fame, wealth,
learning, powerful friends, and belief in God, to whose goodness he
owed the fifteen teeth still remaining in his mouth. It is said that
he prognosticated his own death and committed suicide on the date
predicted in order to maintain his reputation as an astrologer.

Cardan bridged the gap between the Middle Ages and modern
times. In his metaphysics he was still tied to medievalism and fan-
tasy. He was the rational apologist for palmistry, ghosts, portents, and
astrology. He was also a firm believer in natural magic, a ‘science’
somewhat broader in scope than astrology. Through natural magic
man learned about human character, the ways and purposes of na-
ture, knowledge of the future, how the incorruptible heavenly bodies
influence the daily actions and fate of man, and the art of prolonging
life.

In his lewdness and rejection of authoritarian doctrines, as well
as in his searching mathematical, physical, and medical studies, Car-
dan symbolized the revolt from a thousand years of intellectual serf-
dom, and the revival of interest in the physical world. His properly
scientific investigations were modern in spirit and entirely free of
mysticism and occultism. Despite the generous use of other people’s
creations, Cardan’s great works on algebra and arithmetic were the
first major contributions to modern mathematics and were undoubt-
edly among the best of the sixteenth century.

Cardan’s Ars Magna, Copernicus’ On the Revolutions of the
Heavenly Spheres, and Vesalius’ On the Structure of the Human
Body, which appeared between 1548 and 1545, mark as clearly as
the written word ever can the dividing line between medieval and
modern thought. These works were so revolutionary that it is natural
to inquire what forces broke down the medieval civilization and
coalesced to form a new one.

The earliest influence tending to transform thought and life in
medieval Europe was the introduction of Greek works. The first
significant contact with these works was made through the Arabs.
Late in the medieval period some of the Greek scholars, who re-
sided in Constantinople, the center of the Byzantine or Eastern
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Roman Empire, became discouraged by the poverty there and mi-
grated to Italy. Those who remained were driven from their homes
when the Turks captured the city and these, too, sought refuge in
Italy. By the fifteenth century, it became possible to make transla-
tions into Latin directly from the Greek manuscripts these scholars
brought with them. From this time on the impact of Greek knowl-
edge on European thought was boundless. All the great scientists of
the Renaissance acknowledged the Greeks as their inspiration and
gave credit to that people for specific ideas. The Polish Copernicus,
the German Kepler, the Italian Galileo, the French Descartes, and
the English Newton received light and warmth from the sun of
Greece.

Equally important in the fashioning of modern civilization was
the rise of towns, cities, and a merchant class. Mining, manufactur-
ing, cattle-raising on a large scale, and huge farms, the forerunners
of present-day big business, became an important part of European
life. Wealth begets wealth and worldliness. The merchants sought
to enjoy the material things they handled; they demanded, also, the
freedom to plan and do business within the framework of a govern-
ment favorable to their interests. The Church, on the other hand,
denounced profits, sanctified poverty and the simple life, and stressed
denial in this world for the sake of an after-life. Inevitably the towns-
people resented and rebelled against the limitations imposed by
the Church.

Because the merchants sought to expand their trading interests,
they promoted the geographical explorations of the fifteenth and
sixteenth centuries. The discoveries of America and of a route to
China around Africa enlarged man’s horizons and brought much
knowledge to Europe of strange lands, beliefs, religions, and ways of
life. This knowledge challenged medieval dicta and stimulated men’s
imaginations.

In contrast to the slave classes of Egypt, Greece, and Rome and
the serfdom of medieval feudalism, the new society possessed an
expanding class of free laborers and artisans. The stimulus to profit
by their labor caused these men to think through ideas pertinent
to their work. Laborers seeking to increase their effectiveness and
wage-paying employers commenced an active search for labor-saving
devices. As a result, there arose a growing interest in machinery,
materials, and nature. This social and economic movement fostered
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the conversion of the European civilization from feudalism and in.
difference to natural phenomena to industrialism and the investi-
gation of physical problems. The great practical inventions that re-
sulted from the work of the artisans were more momentous than
anyone might have anticipated. Cotton paper and later rag paper
replaced costly parchment; movable type replaced manuscript copy-
ists. These inventions gave wings to thought, enabling it to fly over
boundaries of nations and religions.

Another event of the Renaissance, the introduction of gun powder
in the fourteenth century, suggested a host of scientific problems.
Gun powder made possible bullets and cannon balls which could
be fired effectively from great distances and with high velocities.
To develop these weapons and to learn how to employ them effec-
tively the princes of states spent huge sums which were out of all
proportion to the scientific importance of the phenomena involved.
But the needs of war have always aroused nations to put forth money
and efforts unimaginable during times of peace.

Doubts about the soundness of Church science and cosmology,
objections to the Church’s suppression of experimentation and
thought on problems which the new economic order created, the
degeneration of the papal court to a level of morality which Chris-
tians would normally describe as pagan, and, not the least, serious
intellectual schisms all culminated in the Protestant revolution. The
men who revolted were supported by the merchant class, which was
anxious to break the power of the Church, and by many secular
princes who wished to rule unfettered.

The Reformation as such did not unshackle men’s minds; never-
theless, indirectly it served the cause of free thought. When religious
leaders such as Luther, Calvin, and Zwingli dared to challenge the
papacy and Catholic doctrines, the common person felt encouraged
to do the same. The Protestants, as revolters, were necessarily more
tolerant and so gave protection to thinkers whom the Catholic
Church would have suppressed. Reluctantly, too, the Protestants
made rational interpretations of the Scriptures to combat Catholic
doctrines, though Reason was ‘the Devil’s harlot’ to Luther. In fact,
the Protestants were forced at times to maintain that variations of
belief are the necessary consequences of free inquiry. Finally, inas-
much as people were called upon to choose between Catholic and
Protestant claims, independent thinking was unintentionally en-
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couraged. With a ‘plague on both your houses,” many turned from
the two faiths to other sources of knowledge, such as nature and the
ancient classics.

It should be apparent even from this hasty sketch of the new
forces at work in Europe that fundamental changes were about to
take place in that civilization. Though there may be some dispute
about which century marks the turning point from medieval to
modern times, there is no doubt that by the fifteenth century Europe
became an arena of seething minds which disputed bitterly on re-
ligious beliefs, advocated reason against scholastic tyranny and obso-
lete authority, and pitted Greek worldliness against Catholic other-
worldliness. Intellects forced to speculate endlessly on a small group
of concepts and fettered by limited knowledge and dogmatism finally
burst their bonds. Men intolerant of control, ready to criticize the
established canons of conduct, and enthusiastic about the liberty of
the ancients asserted themselves against irksome authorities. Out of
the intellectual ferment, minds eager to apprehend and devour new
ideas sought ground firmer than the disputed Catholic theology on
which to stand and build, and attempted to erect new approaches
to the problems of man, nature, and the social order.

The material with which to build was readily secured. From the
rich stores of Greek learning which had lain almost untouched for
a thousand years Europeans derived a new spirit, new ideals, and
a new outlook on the universe. The Greek works restored confidence
in the sovereign powers of human reason and encouraged the Renais-
sance man to apply that faculty to the problems besetting his age.
The love of a dispassionate search for truth was reborn and the
search itself redirected to nature’s laws instead of divine pronounce-
ments gleaned from the Scriptures, to the universe of God instead
of God. As if awakened from a long slumber Europeans discovered
a ‘brave new world’ teeming with life and wondrous creatures,
among which man himself stood forth as a biological and physical
phenomenon worthy of ohservation and study. Men looked with en-
livened curiosity at the heavens and were enthralled by the strange
stories of those who sailed the seas and explored new lands. Beauty
so long condemned to hell as a pagan goddess of the flesh was re-
discovered both in literature and in the physical world, and in place
of sin, death, and judgment men sought beauty, pleasure, and joy.
The dignity of man, who had theretofore been denounced as a worth-
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less sinner, was reaffirmed. Above all, the human spirit was emanci-
pated and encouraged to roam freely over the universe.

A major positive doctrine of the Renaissance proclaimed the idea
of ‘back to nature.” Every variety of scientist abandoned the endless
rationalizing on the basis of dogmatic principles vague in meaning
and unrelated to experience, and turned to nature herself as the
true source of knowledge. This appeal to nature and to observation
had been urged long before by Roger Bacon and had even been pur-
sued by a few noble and broad-minded thinkers earlier than the
fifteenth century, among whom we may name William of Ockham,
Nicholas of Oresme, and John Buridan. These men, however, spoke
too soon and could not be heard above the din of endless theological
disputation. But the thin stream slowly broadened out and gained
force.

The back-to-nature movement had hardly been launched when a
few scientists who were ardently engaged in it conceived an even
more revolutionary idea. Whereas the Greeks and early Renaissance
scientists sought knowledge of nature, Francis Bacon and René Des-
cartes dared to suggest mastery and dreamed of man’s conquest of
the whole natural world. To Bacon the aim of science was not just
speculative satisfaction but the establishment of the reign of man
over nature and the increase in man’s comforts and happiness. Des-
cartes wrote:

It is possible to attain knowledge which is very useful in life, and instead
of that speculative philosophy which is taught in the Schools, we may find
a practical philosophy by means of which, knowing the force and the
action of fire, water, air, the stars, heavens and all other bodies that en-
viron us, as distinctly as we know the different crafts of our artisans, we
can in the same way employ them in all those uses to which they are
adapted, and thus render ourselves the masters and possessors of nature.

The challenge thrown out by Bacon and Descartes was quickly
taken up, and scientists plunged optimistically into the task of mas-
tering nature. Today, three hundred years later, the heirs of these
Renaissance thinkers and scientists are still at work on the task, the
vision of Bacon and Descartes steadfast in their minds and urging
them ever onward.

The movement to reconstruct all knowledge by the application of
reason and the return to nature as the source of truth naturally
brought to the fore the subject which had in the past contributed
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pre-eminently to both of these goals. Keen minds seeking to establish
new systems of thought on the basis of certain cogent knowledge
were attracted by the certitude of mathematics, for the truths of
mathematics, however much they may have been ignored in medieval
times, had really never been challenged or been subject to the slight-
est doubt by the true scholars. Moreover, mathematical demonstra-
tions carried with them a compulsion and an assurance that had not
been equaled in science, philosophy, or religion. Said Descartes:

I was especially delighted with the mathematics on account of the certi-
tude and evidence of their reasonings: . . . 1 was astonished that foun-
dations, so strong and solid, should have had no loftier superstructure
reared on them.

Leonardo, too, said that only by holding fast to mathematics can
the mind safely penetrate the labyrinth of intangible and insubstan-
tial thought.

To the Renaissance scientist, as to the Greek, mathematics was
more than a reliable approach to knowledge; it was the key to na-
ture’s behavior. The conviction that nature is mathematical and that
every natural process is subject to mathematical laws began to take
hold in the twelfth century when Europeans first obtained it from
the Arabs, who in turn were quoting the Greeks. Roger Bacon, for
example, believed that the book of nature was written in the lan-
guage of geometry. In his day this doctrine sometimes took a rather
unusual form. It was believed, for example, that the divine light is
the cause of all phenomena and is the form of all bodies. Hence, the
mathematical laws of optics were the true laws of nature.

Kepler, too, affirmed that the reality of the world consists of its
mathematical relations. Mathematical laws are the true cause of phe-
nomena. Mathematical principles are the alphabet in which God
wrote the world, said Galileo; without their help it is impossible to
comprehend a single word, and man wanders in vain through dark
labyrinths. In fact, only the mathematically expressible properties
of the physical world are really knowable. The universe is mathe-
matical in structure and behavior, and nature acts in accordance with
inexorable and immutable laws.

Descartes, father of modernism, related a mystic experience which
revealed to him the secret of nature. In a dream which he recalled
distinctly and which, he said, occurred on 10 November 1619, the
truth stood forth clearly that mathematics is the ‘Open Sesame.” He
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awoke convinced that all of nature is a vast geometrical system.
Thereafter he ‘neither admits nor hopes for any principles in Physics
other than those which are in Geometry or in abstract Mathematics,
because thus all the phenomena of nature are explained, and some
demonstrations of them can be given.’

Nature, then, was to be analyzed and reduced to mathematical
laws. But how should this process begin? What phenomena should
be selected for investigation? What concepts are fundamental and at
the same time mathematically expressible? To these questions the
Renaissance students of nature fashioned their own answers.

Unlike the Greeks to whom objects and their shapes were funda-
mental, space being of concern only as marking the end or boundary
of an object, the new scientist chose space itself as one concept which
underlies all phenomena, and in which objects exist or extend and
move (though Descartes insisted that some kind of non-perceivable
matter exists where the solid matter of experience does not). The
essence of objects or matter is space, and objects are essentially
chunks of space, space solidified, or geometry incarnate. Granted this
principle, matter was mathematically describable through the geom-
etry of space. Time was introduced as another fundamental con-
cept. Objects exist and move in time just as they do in space. Galileo
then pointed out that time could be expressed mathematically, for
the instants of time are but numbers and just as numbers follow
each other, so do the instants in time.

As for objects themselves, their basic properties are extension and
motion. Differences among bodies are differences in shape, density,
and motion of their component particles, and these properties are
real and expressible in mathematical terms. On the other hand, such
qualities as color, taste, warmth, and pitch are not real but are reac-
tions of minds to the real, primary qualities. These secondary quali-
ties could be dismissed in an analysis of the real world because they
are but illusions or mere appearances.

Thus extension, or shape in space, and motion in space and time
are the source of all properties and are the fundamental realities.
In Descartes’ words, ‘Give me extension and motion and I will con-
struct the universe.” Mathematics, through geometry and number,
expresses these essences of objects. The motion of objects, he con-
tinued, is due to the mechanical action of forces which obey neces-
sary and exact laws. Life itself, human, animal, and plant, is subject



RENEWAL OF THE MATHEMATICAL SPIRIT 107

to these laws. Only God and the human soul were exempted by Des-
cartes. In brief, the real world is the totality of mathematically ex-
pressible motions of objects in space and time, and the entire uni-
verse is a great, harmonious, and mathematically designed machine.

The notion of causality, the link between two events one of which
seems to follow necessarily from the other, received a new formula-
tion. The fact that the effect appears to follow the cause in time is
due to the limitations of human sense perceptions. Causa sive ratio;
cause is nothing but reason. The meaning of this doctrine is best
explained by an analogy. Given the axioms of Euclidean geometry,
the properties of a circle, such as the length of the circumference, the
area, and the properties of inscribed angles, are all immediately de-
termined as necessary logical consequences. In fact, Newton is sup-
posed to have asked why anyone bothered to write out the theorems
of Euclidean geometry since they are obviously implied by the
axioms. Most human beings, however, take a long time to discover
each of these properties. But this discovery in time, which seems to
relate axioms and theorems in the same temporal sequence as cause
and effect, is illusory. So it is with physical phenomena. To the di-
vine understanding all phenomena are co-existing and are compre-
hended in one mathematical structure. The senses, however, recog-
nize events one by one and regard some as the causes of others. We
can understand now, said Descartes, why mathematical prediction
of the future is possible; it is because the mathematical relationships
are pre-existing. The ultimate in physical explanation is the mathe-
matical relationship. The mathematical interpretation of nature be-
came so popular and fashionable by 1650 that it spread throughout
Europe and dainty, expensively bound accounts by its chief exposi-
tor, Descartes, adorned ladies’ dressing tables.

One other very vital element in Renaissance thought has not yet
been mentioned. The scientists of the period were born and edu-
cated in a religious world that also had a philosophy of nature. This
philosophy, we know, asserted that the universe was designed by
God and was the product of His handiwork; also, its rationale was
accessible to man. The Catholic emphasis on the reasonableness of
nature and on the all-important presence of God was impressed on
every intellectual of the fifteenth and sixteenth centuries. Hence,
these men faced the task of reconciling and fusing Catholic teachings
and the Greek mathematical view of nature. Their solution is per-
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haps obvious. The universe is designed; it is rational; it is under-
standable to man. This much was common to the two philosophies.
It was merely necessary to add that God designed and created the
universe in accordance with mathematical laws to effect the recon-
ciliation. In other words, by making God a devoted and supreme
mathematician, it became possible to regard the search for the mathe-
matical laws of nature as a religious quest. The study of nature be-
came the study of God’s word, His ways, and His will. The harmony
of the world was God’s mathematical arrangement and, added Des-
cartes, the laws of nature remained constant because of the eternal
invariableness of God’s will.

God put into the world that rigorous mathematical order which
men comprehend only laboriously. Mathematical knowledge is ab-
solute truth and as sacrosanct as any line of Scripture—superior,
in fact, for there is much disagreement about the Scriptures but
there can be none about mathematical truths. ‘Nor,” said Galileo,
‘does God less admirably discover Himself to us in Nature’s actions,
than in the Scripture’s sacred dictions.’

Thus Catholic emphasis on a universe rationally designed by God
and the Pythagorean-Platonic insistence on mathematics as the fun-
damental reality of the physical world were fused in a program for
science which in essence amounted to this: science was to discover
the mathematical relationships that underlie and explain all natural
phenomena and thus reveal the grandeur and glory of God’s handi-
work.

We can see that modern science derived its inspiration and initia-
tion from a philosophy that affirmed the mathematical design of
nature. Moreover, the goal of science was, similarly, a mathematical
one, namely, the disclosure of that design. As Randall says in the
Making of the Modern Mind, ‘Science was born of a faith in the
mathematical interpretation of Nature, held long before it had been
empirically verified.’

The nature of scientific activity as envisaged by the Renaissance
thinkers is often incorrectly understood. Many people credit the rise
of modern science to the introduction of experimentation on a large
scale and believe that mathematics served only occasionally as a
handy tool. The true situation, as indicated above, was actually quite
the reverse. The Renaissance scientist approached the study of na-
ture as a mnathematician; that is, he sought and expected to find
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broad, profound, immutable, rational principles either through in-
tuition or immediate sense perception, in much the same way as
Euclid presumably found his axioms. There was to be little or no
assistance from experimentation. He then expected to deduce new
laws from these principles. The Renaissance scientist was a theo-
logian with nature instead of God as his subject. For Galileo, Des-
cartes, Huygens, and Newton, the deductive, mathematical part of
the scientific enterprise always loomed larger than experimentation.
Galileo valued a scientific principle, even when obtained by experi-
mentation, far more because of the abundance of theorems which
flowed deductively from it than because it afforded knowledge in
itself. Moreover, he said that he experimented rarely and then pri-
marily to refute those who did not follow the mathematics.

It is true that some experimentation did take place; a great deal
of it, however, was performed by artisans and technicians who did
not seek ultimate meanings and laws but common, practical knowl-
edge. Moreover, the experiments that had been performed by the
middle of the seventeenth century were not decisive. Not only did
mathematical theory precede and dominate experimentation in the
formative period of modern science but, peculiarly enough, experi-
mentation was regarded as anti-scientific. The turn to experimenta-
tion was an anti-rationalist movement, a movement away from the
unending and hitherto profitless speculation of a waning religious
spirit and away from religious dogmatism so often proved wrong.
Long after the Renaissance, the experimentalists and theoreticians
realized that they were pursuing the same objectives and united their
efforts.

What the great thinkers of the Renaissance envisaged as the
proper procedure for science did indeed prove to be the more profit:
able course. The rational search for laws of nature produced, by
Newton’s time, very valuable results on the basis of the slimmest
observational and experimental knowledge. The great advances of
the sixteenth and seventeenth centuries were in astronomy where
observation offered little that was new and in mechanics where the
mathematical theory attained comprehensiveness and perfection on
the basis of very limited experimentation. The scientist is usually
pictured in a laboratory piled up with impressive equipment and
gadgets; actually, during the Renaissance the major scientists were
‘pencil-pushers.’



X

The Harmony of the World

« . . how build, unbuild, contrive

To save appearances, how gird the Sphere
With Centrik and Eccentrick scribl'd o’er
Cycle and Epicycle, Orb in Orb.

JOHN MILTON

On the title page of Copernicus’ On the Revolutions of the Heavenly
Spheres, published in the year of his death, 1543, appeared the leg-
end originally inscribed on the entrance to Plato’s academy: ‘Let no
one ignorant of geometry enter here.” The Renaissance had borne
its first fruits.

Perhaps the enterprising merchants of the Italian towns received
more than they bargained for when they aided the revival of Greek
culture. They sought merely to promote a freer atmosphere; they
reaped a whirlwind. Instead of continuing to dwell and prosper on
firm ground, the terra firma of an immovable Earth, they found
themselves clinging precariously to a rapidly spinning globe that
was speeding about the sun at an inconceivable rate. It was probably
sorry recompense to these merchants that the very same theory which
shook the Earth free and set it spinning also freed the mind of man.

The reviving Italian universities were the fertile soil for these new
blossoms of thought. There Nicolaus Copernicus became imbued
with the Greek conviction that nature is a harmonious medley of
mathematical laws and there, too, he became acquainted with the
hypothesis—Hellenic also in origin—of planetary motion about a sta-
tionary sun. In Copernicus’ mind these two ideas coalesced. Harmony
in the universe demanded a heliocentric theory and he became will-
ing to move heaven and earth in order to establish it.

Copernicus was born in Poland. After studying mathematics and

science at the University of Cracow, he decided to go to Bologna,
110
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where learning was more widespread. There he studied astronomy
under the influential teacher, Novara, a foremost Pythagorean. In
1512 he assumed the position of canon of the Cathedral of Frauen-
burg in East Prussia, his duties being that of steward of Church prop-
erties and justice of the peace. During the remaining thirty-one years
of his life, however, he spent much time in a little tower on the wall
of the Cathedral closely observing the planets with naked eyes and
making untold measurements with crude homemade instruments.
The rest of his spare time he devoted to improving his new theory
of the motions of heavenly bodies.

After years of observation and mathematical reflection, Copernicus
finally circulated a manuscript describing this theory and his work
on it. The reigning pope, Clement vi, approved of the work and
requested its publication. But Copernicus hesitated. The tenure of
office of the Renaissance popes was rather brief and a liberal pope
might readily be succeeded by a reactionary one. Ten years later,
Copernicus’ friend Rheticus persuaded him to allow the publication,
which Rheticus himself then undertook. While lying paralyzed from
an apoplectic stroke, Copernicus received a copy of his book. It is
unlikely that he was able to read it, for he never recovered. He died
shortly afterward, in the year 1543.

At the time that Copernicus delved into astronomy the science was
in about the same state in which Ptolemy had left it. It had become
increasingly difficult, however, to include under the Ptolemaic heav-
ens the knowledge and observations of Earth and sky accumulated,
largely by the Arabians, during the succeeding centuries. By Coper-
nicus’ time it was necessary to invoke a total of %% mathematical
circles in order to account for the motion of the sun, moon, and
planets under the epicyclic scheme discussed in Chapter vi. It is no
wonder that Copernicus grasped at the possibilities in the Greek idea
of planetary motion about a stationary sun.

Already incorporated in Ptolemaic theory were some other Greek
ideas which Copernicus adopted. He, too, believed that circular mo-
tion was the natural motion of heavenly bodies and therefore used
the circle as the basic curve on which to build his theory. Accord-
ingly, he supposed that each body, that is, moon or planet, moves on
a circle whose center moves on another circle. For some of these
bodies he assumed that the center of the latter circle moved on still a
third circle, and where necessary, he introduced even a fourth circle.
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The center of the last circle he assumed to be the sun, whereas Hip-
parchus and Ptolemy had taken it to be the Earth. For a mystic
reason similar to that held by the Greeks, he retained the notion that
each body or point moves along its circle at a constant speed, though
the apparent motion of the body is not constant. A change in speed,
Copernicus reasoned, could be caused only by a change in motive
power, and since God, the cause of the motion, was constant, the
effect could not be otherwise.

Then Copernicus proceeded to do what no Greek is known to have
attempted; he carried out the mathematical analysis required by the
heliocentric hypothesis. Merely by using the sun where Hipparchus
and Ptolemy had used the Earth, Copernicus found that he was able
to reduce the total number of circles involved from 44 to gi. Later,
to secure better accord with observations, he refined his theory some-
what by putting the sun near, but not quite at, the center of some of
these aggregations of circles.

When Copernicus surveyed the extraordinary mathematical sim-
plification that the heliocentric hypothesis afforded, his satisfaction
and enthusiasm were unbounded. He had found a simpler mathemat-
ical account of the motions of the heavens, and hence one which must
be preferred, for Copernicus, like all scientists of the Renaissance,
was convinced that ‘Nature is pleased with simplicity, and affects not
the pomp of superfluous causes.” Copernicus could pride himself, too,
in the fact that he had dared to think through what others, including
Archimedes, had rejected as absurd.

Copernicus did not finish the job he had set out to do. Though
the hypothesis of a stationary sun considerably simplified astronom-
ical theory and calculations, the epicyclic paths of the planets did not
quite fit observations and Copernicus’ few attempts to patch up his
theory, always on the basis of circular motions, did not succeed.

It remained for the German, Johann Kepler, some fifty years later,
to complete and extend the work of Copernicus. Like most youths of
those days who showed some interest in learning, Kepler was headed
for the ministry. While studying at the University of Tiibingen he
obtained private lessons in Copernican theory from a teacher with
whom he had become friendly. The simplicity of this theory im-
pressed Kepler very much. Perhaps this interest awakened suspicions
in the minds of the superiors of the Lutheran Church, for they ques-
tioned Kepler’s devoutness, cut short his ministerial career, and as-
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signed him to the professorship of Mathematics and Morals at the
University of Gratz. This position called for a knowledge of astrology,
and so he set out to master the rules of that ‘art” By way of practice
he checked the predictions he made about his own fortune.

As an extracurricular activity he applied mathematics to matri-
mony. He had married a wealthy heiress while he was at Gratz. When
this wife died he listed the young ladies eligible for the vacancy, rated
each on a series of qualities, and averaged the grades. Women being
notoriously less rational than nature, the highest-ranking prospect
refused to obey the dictates of mathematics and declined the honor
of being Mrs. Kepler. Only by substituting a smaller numerical value
was he able to satisfy the equation of matrimony.

Kepler's interest in astronomy continued and he left Gratz to be-
come an assistant to that most famous observer, Tycho Brahe. On
Brahe’s death Kepler succeeded him as official astronomer, part of
his duties being once again of an astrological nature for he was re-
quired to cast horoscopes for worthies at the court of his employer,
Rudolph 1. He reconciled himself to this work with the philosoph-
ical view that nature provided all animals with a means of existence.
He was wont to refer to astrology as the daughter of astronomy who
nursed her own mother.

During the years he spent as astronomer to the Emperor Rudolph,
Kepler did his most serious work. It is extremely interesting that
neither he nor Copernicus ever succeeded in ridding himself of the
scholasticism from which his age was emerging. Kepler, in particular,
mingled science and mathematics with theology and mysticism in his
approach to astronomy, just as he combined wonderful imaginative
power with meticulous care and extraordinary patience.

Moved by the beauty and harmonious relations of the Copernican
system, he decided to devote himself to the search for whatever ad-
ditional geometrical harmonies the data supplied by Tycho Brahe’s
observations might suggest and, beyond that, to find the mathemat-
ical relations binding all the phenomena of nature to each other. His
predilection for fitting the universe into a preconceived mathematical
pattern, however, led him to spend years in following up false trails.
In the preface to his Mystery of the Cosmos (1596) we find him
writing:

I undertake to prove that God, in creating the universe and regulating
the order of the cosmos, had in view the five regular bodies of geometry
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as known since the days of Pythagoras and Plato, and that he has fixed
according to those dimensions, the number of heavens, their proportions,
and the relations of their movements.

And so he postulated that the radii of the orbits of the planets were
the radii of spheres related to the five regular solids in the following
way. The largest radius was that of the orbit of Saturn. In a sphere
of this radius he supposed a cube to be inscribed. In this cube a
sphere was inscribed whose radius was that of the orbit of Jupiter.
In this sphere he supposed a tetrahedron to be inscribed and in this
another sphere whose radius was that of the orbit of Mars, and so on
through the five regular solids (plate v). The scheme called for six
spheres, just enough for the number of planets known in his day.
The beauty and neatness of the scheme overwhelmed him so com-
pletely that he insisted for some time on the existence of just six
planets because there were only five regular solids to determine the
distances between them.

Although publication of this ‘scientific’ hypothesis brought fame
to Kepler and makes fascinating reading even today, the deductions
from it were, unfortunately, not in accordance with observations. He
reluctantly abandoned his idea, but not before he had made extraor-
dinary efforts to apply it in a modified form.

If the attempt to use the five regular solids to ferret out nature’s
secrets did not succeed, Kepler was eminently successful in later ef-
forts to find harmonious mathematical relations. His most famous
and important results are known today as Kepler’s three laws of plan-
etary motion. These laws became so famous and so valuable to science
that he earned for himself the title of ‘legislator of the sky.’

The first of these laws says that the path of each planet is not a
circle but an ellipse with the sun slightly off center at a point known
as a focus of the ellipse (fig. 18). Substituting the ellipse for the circle
eliminated the need for the several circular motions superimposed
on one another that the epicyclic theory employed to describe the
motion of a planet. (It is worth noticing that Kepler put to use math-
ematical knowledge which had been developed by the Greeks almost
two thousand years earlier.) The simplicity gained by the introduc-
tion of the ellipse convinced him that he must abandon attempts to
use circular motions.

Kepler's second law concerns the speed of the planets. Copernicus,
we saw, insisted on the principle of constant speed, that is, each planet
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moved at a constant speed on its circle; the center of this circle moved
at a constant speed on another circle; and so on. Kepler at first held
firmly to the doctrine that each planet moves along its ellipse at a
constant speed, but observations finally compelled him to abandon
this cherished belief. His joy was great when he discovered that he
could replace it by an equally pleasing law, for his conviction that
nature was mathematical was thereby reafhrmed.

If MM’ and NN’ (fig. 18) are distances traversed by a planet in
equal intervals of time then, according to the principle of constant
speed, MM’ and NN’ would have to be equal distances. According to
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Figure 18. The elliptical and equal-area laws of planetary motion

Kepler’s second law, however, MM’ and NN’ are generally not equal,
but, if O is the position of the sun, then the areas OMM’ and ONN’
are equal. Thus Kepler replaced equal distances by equal areas, and
the mathematical design of the universe remained unshaken. To
wrest such a secret from the heavens was indeed a triumph, for the
relation described is by no means as easily discernible as it may ap-
pear to be here on paper. Kepler published this law and the law of
elliptical motion in the year 1609 in a book entitled On the Motions
of the Planet Mars.

Kepler’s third law is as famous as his first two. It says that the
square of the time of revolution of any planet is proportional to the
cube of its average distance from the sun; that is, the ratio of the two
quantities is the same for all planets. This formula can be used to
compute the period of revolution of any planet from a knowledge
of its average distance from the sun or, knowing the period of revo-
lution, we can compute the average distance from the sun.

It is clear that mathematical concepts and mathematical laws are
the essence of the new astronomical theory. But what is even more
significant is the fact that its mathematical excellence endeared it to
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both Copernicus and Kepler despite many very weighty arguments
against it. Indeed if either Copernicus or Kepler had been less the
mathematician and more the scientist, or blind religionists, or even
what the world calls sensible men, they would never have stood their
ground. The scientific objections to a moving Earth were numerous.
Neither man could explain how the heavy stuff of the Earth could
be started and kept in motion, a major question asked by people who
believed that only the heavenly bodies were light and could there-
fore be easily moved. About the best answer that Copernicus could
give was that it is natural for any sphere to move. Equally trouble-
some was the objection: why doesn’t the Earth’s rotation cause ob-
jects on it to fly off into space just as an object whirled at the end
of a string tends to fly off? In particular, why doesn’t the Earth itself
fly apart in pieces? The first question was not answered at all. To the
latter question Copernicus replied that since the motion was natural,
it could not have the effect of destroying the body. He also countered
by asking why the skies did not fall apart under the motion presumed
by the geocentric hypothesis. Entirely unanswered was the objection,
related to the first question, that if the Earth rotates from west to
east, an object thrown up into the air should fall back to the west
of its original position. Again, if, as practically all scientists since
Greek times believed, the motion of an object is proportional to its
weight, why doesn’t the Earth, in its motion around the sun, leave
behind objects of lesser weight? Even the air surrounding the Earth
should be left behind. Though Copernicus could not account for the
fact that all objects on the Earth move with it, he ‘disposed’ of the
motion of the air by arguing that the air is earthy and so rotates in
sympathy with the Earth. All of the scientific objections to the new
heliocentric theory given above were genuine and arose out of the
fact that the age still accepted Aristotelian physics. The objections
could not be and were not satisfactorily answered until Newtonian
physics was created.

No less a personage than Francis Bacon, the father of empirical
science, summed up in 1622 the scientific arguments against Coper-
nicanism:

In the system of Copernicus there are found many and great inconven-
iences; for both the loading of the earth with a triple motion is very in-
commodius and the separation of the sun from the company of the planets
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with which it has so many passions in common is likewise a difficulty and
the introduction of so much immobility into nature by representing the
sun and the stars are immovable . . . all these are the speculations of
one, who cares not what fictions he introduces into nature, provided his
calculations answer.

Although the clarity of Bacon's arguments could be surpassed, the
opposition of a man of his reputation and ability could not be lightly
brushed aside. Bacon’s conservatism was due, incidentally, to his per-
sistent inability to appreciate the importance of exact measurement
with all his insistence on observation.

If Copernicus and Kepler had been more ‘sensible,”. ‘practical’ men,
they would never have defied their senses. We do not feel either the
rotation or the revolution of the Farth despite the fact that Coper-
nican theory has us rotating through space about three-tenths of a
mile per second and revolving around the sun at the rate of about
eighteen miles per second. On the other hand, we apparently do see
the motion of the sun. To the famous astronomical observer, Tycho
Brahe, these and other arguments were conclusive proof that the
Earth must be stationary. In the words of Henry More ‘sense pleads
for Ptolemee.’

Were Copernicus and Kepler orthodox religionists, they would not
have been willing even to investigate the possibilities of a heliocen-
tric hypothesis. Medieval theology, buttressed by the Ptolemaic sys-
tem, held that man was at the center of the universe and that he was
the apple of God’s eye for whom God had specially created the sun,
moon, and stars. By putting the sun at the center of the universe, the
heliocentric theory denied this comforting dogma. It made man ap-
pear to be one of a possible host of wanderers on many planets which,
in turn, were drifting through a cold sky. He was an insignificant
speck of dust on a whirling globe instead of chief actor on the central
stage. It was unlikely, therefore, that he was born to live gloriously
and to attain paradise upon his death, or that he was the object of
God’s ministrations. The sacrifice of Christ for insignificant man ap-
peared pointless. The sky as the seat of God, the destination of the
saints and of a Deity ascended from the Earth, and the paradise to
which good people could aspire, was shattered by the passage of a
speeding Earth. In short, the undermining of the Ptolemaic order
of the universe removed cornerstones of the Christian edifice and
threatened to topple the whole structure.
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Copernicus’ willingness to battle entrenched religious thinking is
well evidenced by a passage in a letter he addressed to Pope Paul 111:

If perhaps there are babblers who, although completely ignorant of
mathematics, nevertheless take it upon themselves to pass judgment on
mathematical questions and, improperly distorting some passages of the
Scriptures to their purpose, dare to find fault with my system and censure
it, I disregard them even to the extent of despising their judgment as
uninformed.

Religion, physical science, common sense, and even astronomy
bowed to mathematics at the behest of Copernicus and Kepler.
Copernicus and Kepler had to combat many astronomical doctrines
established either in Ptolemaic theory or in medieval embellishments
of Aristotle. For example, the planets, sun, and moon were believed
to be perfect, unalterable, and incorruptible, whereas the Earth had
the contrary properties. The new theory classed the Earth with the
other planets. Furthermore, the hypothesis of a moving Earth calls
for motion of the stars relative to the Earth. But observations by men
of the sixteenth and seventeenth centuries failed to detect this relative
motion. Now no scientific hypothesis that is inconsistent with even
one fact is really tenable. Nevertheless, Copernicus and Kepler held
to their heliocentric view. These sun-struck lovers of mathematics
were designing a beautiful theory. If the theory did not fit all the
facts, it was too bad for the facts.

Copernicus, though deliberately vague on the question of the mo-
tion of the Earth relative to the stars, at first disposed of the problem
by stating that the stars were at an infinite distance. Apparently, he
himself was not too satisfied with this statement and so he assigned
the problem to the philosophers. The true explanation, namely, that
the stars were very far from the Earth, so far as to render their rel-
ative motion undetectable, was not acceptable to the Renaissance
‘Greeks,” who still believed in a closed and limited universe. The
true distances involved were utterly beyond any figure they would
have thought reasonable. Actually, the problem of accounting for
the motion of the stars relative to the Earth was not solved until 1838
when the mathematician Bessel finally measured the parallax of the
nearest star and found it to be 0.76”.

In view of all these arguments and forces working against the new
theory, why did Copernicus and Kepler advocate it? Knowing that
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the great explorations of their age demanded a more accurate astron-
omy, one is tempted to ascribe the motivation for their work to the
need for more reliable geographical information and improved tech-
niques in navigation. But Copernicus and Kepler were not at all
concerned with these pressing, practical problems. What these men
did owe to their times was the opportunity to come into contact with
Greek thought, an opportunity furnished by the revival of learning
in Italy. Copernicus, we saw, studied there and Kepler benefited by
Copernicus’ work. Also both men owed to their times an atmosphere
certainly more favorable to the acceptance of new ideas than the one
that prevailed two centuries earlier. The geographical explorations,
the Protestant Revolution, and so many other exciting movements
were challenging conservatism and complacency, that one new the-
ory did not have to bear the brunt of the natural opposition to
change.

Actually, Copernicus and Kepler developed their most revolu-
tionary theory to satisfy certain philosophical and religious interests.
Having become convinced of the Pythagorean doctrine that the uni-
verse is a systematic, harmonious structure whose essence is mathe-
matical law, they set about discovering this essence. Copernicus’ pub-
lished works give unmistakable, if indirect, indications of his reasons
for devoting himself to astronomy. He valued his theory of planetary
motion not because it improves navigational procedures but because
it reveals the true harmony, symmetry, and design in the divine work-
shop. It is wonderful and overpowering evidence of God’s presence.
Writing of his achievement, which was thirty years in the making,
Copernicus expressed his gratification:

We find, therefore, under this orderly arrangement, a wonderful symme-
try in the universe, and a definite relation of harmony in the motion and
magnitude of the orbs, of a kind that it is not possible to obtain in any
other way.

He did mention in the preface to his major work, De Revolutionibus,
that he was asked by the Lateran Council to help in reforming the
calendar which had become deranged over a period of many cen-
turies. Though he wrote that he kept this problem in mind it is quite
apparent that it never dominated his thinking.

Kepler, too, made clear his dearest interests. His published work,
the fruit of his labors, attest to the sincerity of his search for harmony
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and law in the creations of the divine power. In the preface to his
Mystery of the Cosmos he said:

Happy the man who devotes himself to the study of the heavens; he
learns to set less value on what the world admires the most; the works
of God are for him above all else, and their study will furnish him with
the purest of enjoyments.

A major treatise entitled The Harmony of the World, which
Kepler published in 1619, actually expounded a system of heavenly
harmonies, a new ‘music of the spheres,” which made use of the vary-
ing velocities of the six planets. These harmonies were enjoyed by
the sun which Kepler endowed with a soul specifically for this pur-
pose. Lest it be supposed that this treatise was just a lapse into poetic
mysticism, we should realize that it also announced his celebrated
third law of motion.

The work of Copernicus and Kepler was the work of men search-
ing the universe for the harmony which their commingled religious
and scientific beliefs assured them must exist, and exist in aestheti-
cally satisfying mathematical form. It is true that Ptolemaic theory
also offered mathematical laws of the universe and Copernicus and
Kepler did agree that since astronomy was just geometry and geom-
etry was truth, either theory could be true because both were good
geometry. But the new theory was mathematically simpler and more
harmonious.

To men who were convinced that an omnipotent being designing
a mathematical universe would certainly prefer these superior fea-
tures, the new theory was necessarily right. Indeed, only a mathema-
tician who was assured that the universe was rationally and simply
ordered would have had the mental fortitude to buck the prevailing
philosophical, religious, and scientific beliefs, and the perseverance
to work out the mathematics of such a revolutionary astronomy. Only
men possessed of unshakable convictions in regard to the importance
of mathematics in the design of the universe would have dared to
uphold the new theory against the powerful opposition it was sure to
encounter. It is a historical fact that Copernicus did address himself
only to mathematicians because he expected that these alone would
understand him, and in this respect he was not disappointed.

Granted that it was the superior mathematics of the new theory
which inspired Copernicus and Kepler, and later Galileo, to repu-
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diate religious convictions, scientific arguments, common sense, and
well-entrenched habits of thought, how did the theory help to shape
modern times?

First, Copernican theory has done more to determine the content
of modern science than is generally recognized. The most powerful
and most useful single law of science is Newton’s law of gravitation.
Without anticipating here the discussion reserved for a more appro-
priate place in this book we can say that the best experimental evi-
dence for this law, the evidence which established it, depends entirely
on the heliocentric theory.

Second, this theory is responsible for a new trend in science and
human thought, barely perceptible at the time but all-important to-
day. Since our eyes do not see, nor our bodies feel, the rotation and
revolution of the Earth, the new theory rejected the evidence of the
senses. Things were not what they seemed to be. Sense data could be
misleading and reason was the reliable guide. Copernicus and Kepler
thereby set the precedent that guides modern science, namely, that
reason and mathematics are more important in understanding and
interpreting the universe than the evidence of the senses. Vast por-
tions of electrical and atomic theory and the whole theory of rela-
tivity would never have been conceived if scientists had not come to
accept the reliance upon reason first exemplified by Copernican
theory. In this very significant sense Copernicus and Kepler began
the Age of Reason, in addition to fulfilling the cardinal function of
scientists and mathematicians, that is, to provide a rational compre-
hension of the universe.

By deflating the stock of Homo sapiens, Copernican theory re-
opened questions that the guardians of Western civilization had been
answering dogmatically upon the basis of Christian theology. Once
there had been only one answer; now there are ten or twenty to such
basic questions as: Why does man desire to live and for what pur-
pose? Why should he be moral and principled? Why seek to preserve
the race? It is one thing for man to answer such questions in the
belief that he is the child and ward of a generous, powerful, and
provident God. It is another to answer them knowing that he is a
speck of dust in a cyclone.

Copernican theory flung such questions in the faces of all thinking
men and women, and, as thinking beings, they could not reject the
challenge. Their struggles to recover mental equilibrium, which was
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even further upset by the mathematical and scientific work following
Copernicus and Kepler, provide the key to the history of thought of
the last few centuries.

Much evidence can be found in the literature since Kepler’s times
that points to this agitation aroused by the new and disturbing
thoughts. The metaphysical John Donne, though trained in and con-
tent with the encyclopedic and systematic scholasticism, was com-
pelled to acknowledge the undesirable complexity to which Ptole-
maic theory had led:

We think the heavens enjoy their spherical

Their round proportion, embracing all;

But yet their various and perplexed course,
Observed in divers ages, doth enforce

Men to find out so many eccentric parts,

Such diverse downright lines, such overthwarts,
As disproportion that pure form.

Though the argument for Copernicanism was clear to Donne he
could only deplore the fact that the sun and planets no longer ran
in circles around the Earth.

Milton, also, pondered the challenge to Ptolemaic theory but made
no decisive choice. Both theories are described in Paradise Lost.
Unable to meet the new mathematics on its own ground he turned
instead to rebuking its creators. Man should admire, not question,
the works of God.

From Man or Angel the great Architect

Did wisely to conceal, and not divulge

His secrets to be scann’d by them who ought
Rather admire; . . .

Solicit not thy thoughts with matters hid,
Leave them to God . . .

. . . be lowly wise;

Think only what concerns thee and thy being.

Yet even Milton was unconsciously moved to accept a more myster-
ious and a vaster space than the compact, thoroughly defined space
of Dante, for example.

The gentle remonstrations of the milder poets, Ben Jonson's
satire, Bacon’s scientific arguments as well as personal jealousy, the
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ridicule of professors, the mathematical refutations of the brilliant
Cardan, the resentment of astrologers who feared for their livelihood,
Montaigne’s scepticism, complete rejection from Shakespeare, and
condescending mention from John Milton earned for Copernicus a
reputation as a new Duns Scotus, the learned crazy one. In 1597
Galileo wrote to Kepler describing Copernicus as one ‘who though
he has obtained immortal fame among the few, is nevertheless, ridi-
culed and hissed by the many, who are fools.”

Nevertheless the opinion of the few prevailed. The cultural revo-
lution gained momentum; people were compelled to think, to chal-
lenge existing dogmas, and to re-examine long-accepted beliefs. And
from this criticism and re-examination there emerged many of the
philosophical, religious, and ethical principles now accepted without
question in Western civilization.

By far the greatest value of the heliocentric theory to modern times
is the contribution it made to the battle for freedom of thought and
expression. The treatment that the heliocentric hypothesis received
at the outset illustrates one fairly safe generalization: the reaction to
change is reaction. Because man is conservative, a creature of habit,
and convinced of his own importance, the new theory was decidedly
unwelcome. Moreover, the vested interests of well-entrenched schol-
ars and religious leaders caused them to oppose it. The most momen-
tous battle in history, the battle for the freedom of the human mind,
was joined on the issue of the right to advocate heliocentrism. And
among the most violent of the anti-Copernicans were the Protestants
who had so recently broken from traditionalism themselves.

The self-appointed representatives of God began the battle with
vicious attacks. Martin Luther called Copernicus an ‘upstart astrol-
oger’ and a ‘fool who wishes to reverse the entire science of astron-
omy.” Calvin thundered: “Who will venture to place the authority of
Copernicus above that of the Holy Spirit?” Do not Scriptures say that
Joshua commanded the sun and not the Earth to stand still? That
the sun runs from one end of the heavens to the other? That the
foundations of the Earth are fixed and cannot be moved? Let us
learn how to go to heaven and not how the heavens go, protested a
Cardinal. The Inquisition condemned the new theory as ‘that false
Pythagorean doctrine utterly contrary to the Holy Scriptures,” and
in 1616 the Index of Prohibited Books banned all publications deal-
ing with Copernicanism. Indeed, if the fury and high office of the
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opposition are a good indication of the importance of an idea no
more valuable one was ever advanced.

The spirit of inquiry became so shackled in that age that when
Galileo discovered the four satellites of Jupiter with his small tele-
scope, some scientists and religionists refused to look through his
instrument to see those bodies for themselves. And many who did
tempt the devil by looking refused to believe their own eyes. It was
this bigoted attitude that made it dangerous to advocate the new
theory. One risked the fate of Giordano Bruno, who was put to death
by the Inquisition ‘as mercifully as possible and without the shed-
ding of blood,” the horrible formula for burning a prisoner at the
stake.

Despite the earlier ecclesiastic prohibition of works on Coperni-
canism, Pope Urban viir did give Galileo permission to publish a
book on the subject, for the Pope believed there was no danger that
anyone would ever prove the new theory necessarily true. Accord-
ingly in 1632 Galiico published his Dialogue on the Two Chief Sys-
tems of the World in which he compared the geocentric and helio-
centric doctrines. In order to please the Church and so pass the
censors he incorporated a preface to the effect that the latter theory
was only a product of the imagination. Unfortunately, Galileo wrote
too well and the Pope began to fear that the argument for helio-
centrism, like a live bomb wrapped in silver foil, could still do a
great deal of damage to the Catholic faith. The Church roused itself
once more to do battle against a heresy ‘more scandalous, more de-
testable, and more pernicious to Christianity than any contained in
the books of Calvin, of Luther, and of all other heretics put together.’
Galileo was again called by the Roman Inquisition and compelled
on the threat of torture to declare: ‘“The falsity of the Copernican
system cannot be doubted, especially by us Catholics. . .’

The threat of burning faggots, the wheel, the rack, the gallows,
and other ingenious refinements of torture were definitely more con-
ducive to orthodoxy than to scientific progress. When he heard of
Galileo’s persecution, Descartes, who was a nervous and timid indi-
vidual, refrained from advocating the new theory and actually de-
stroyed one of his own works on it.

The heliocentric theory became, however, a powerful weapon with
which to fight the suppression of free thought. The truth (at least to
the seventeenth and eighteenth centuries) of the new theory and its
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incomparable simplicity attracted more and more adherents as people
gradually realized that the teachings of religious leaders could be
fallible. It soon became impossible for these leaders to retain their
authority over all Europe and the way was prepared for freer thought
in all spheres. Certainly the emancipation of science from theology
dates from this controversy.

The import of this battle and its favorable outcome should not be
lost to us. Those who still enjoy and those who have lost the free-
doms so recently acquired in Western civilization cannot fail to ap-
preciate how much was at stake in the battle to advance the helio-
centric theory and how much we owe to the men of gigantic intellect
and extraordinary courage who waged the fight. Fortunately for us
the very fires that consumed the martyrs to free inquiry dispelled the
darkness of the Middle Ages. The fight to establish the heliocentric
theory weakened the stranglehold of ecclesiasticism on the minds of
men. The mathematical argument proved more compelling than the
theological cne and the battle for the freedom to think, speak, and
write was finally won. The scientific Declaration of Independence is
a collection of mathematical theorems.



X

Painting and Perspective

The world’s the book where the eternal sense
Wrote his own thoughts; the living temple where,
Painting his very self, with figures fair
He filled the whole immense circumference.

T. CAMPANELLA

During the Middle Ages painting, serving somewhat as the hand-
maiden of the Church, concentrated on embellishing the thoughts
and doctrines of Christianity. Toward the end of this period, the
painters, along with other thinkers in Europe, began to be interested
in the natural world. Inspired by the new emphasis on man and the
universe about him the Renaissance artist dared to confront nature,
to study her deeply and searchingly, and to depict her realistically.
The painters revived the glory and gladness of an alive world and
reproduced beautiful forms which attested to the delightfulness of
physical existence, the inalienable right to satisfy natural wants,
and the pleasures afforded by earth, sea, and air.

For several reasons the problem of depicting the real world led
the Renaissance painters to mathematics. The first reason was one
that could be operative in any age in which the artist seeks to paint
realistically. Stripped of color and substance the objects that painters
put on canvas are geometrical bodies located in space. The language
for dealing with these idealized objects, the properties they possess
as idealizations, and the exact relationships that describe their rela-
tive locations in space are all incorporated in Euclidean geometry.
The artists need only avail themselves of it.

The Renaissance artist turned to mathematics not only because he
sought to reproduce nature but also because he was influenced by
the revived philosophy of the Greeks. He became thoroughly famil-

iar and imbued with the doctrine that mathematics is the essence of
126
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the real world, that the universe is ordered and explicable rationally
in terms of geometry. Hence, like the Greek philosopher, he be-
lieved that to penetrate to the underlying significance, that is, the
reality of the theme that he sought to display on canvas, he must
reduce it to its mathematical content. Very interesting evidence of
the artist’s attempt to discover the mathematical essence of his sub-
ject is found in one of Leonardo’s studies in proportion. In it he
tried to fit the structure of the ideal man to the ideal figures, the
square and circle (plate vi).

The sheer utility of mathematics for accurate description and the
philosophy that mathematics is the essence of reality are only two
of the reasons why the Renaissance artist sought to use mathematics.
There was another reason. The artist of the late medieval period and
the Renaissance was, also, the architect and engineer of his day and
so was necessarily mathematically inclined. Businessmen, secular
princes, and ecclesiastical officials assigned all construction problems
to the artist. He designed and built churches, hospitals, palaces,
cloisters, bridges, fortresses, dams, canals, town walls, and instru-
ments of warfare. Numerous drawings of such engineering projects
are in da Vinci’s notebooks and he, himself, in offering his services
to Lodovico Sforza, ruler of Milan, promised to serve as an engineer,
constructor of military works, and designer of war machines, as well
as architect, sculptor, and painter. The artist was even expected to
solve problems involving the motion of cannon balls in artillery fire,
a task which in those times called for profound mathematical knowl-
edge. It is nc exaggeration to state that the Renaissance artist was the
best practicing mathematician and that in the fifteenth century he
was also the most learned and accomplished theoretical mathema-
tician.

The specific problem which engaged the mathematical talents of
the Renaissance painters and with which we shall be concerned here
was that of depicting realistically three-dimensional scenes on canvas.
The artists solved this problem by creating a totally new system of
mathematical perspective and consequently refashioned the entire
style of painting.

The various schemes employed throughout the history of painting
for organizing subjects on plaster and canvas, that is, the various
systems of perspective, can be divided into two major classes, con-
ceptual and optical. A conceptual system undertakes to organize the
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persons and objects in accordance with some doctrine or principle
that has little or nothing to do with the actual appearance of the
scene itself. For example, Egyptian painting and relief work were
largely conceptual. The sizes of people were often ordered in rela-
tion to their importance in the politico-religious hierarchy. Pharaoh
was usually the most important person and so was the largest. His
wife would be next in size and his servants even smaller. Profile
views and frontal views were used simultaneously even for different
parts of the same figure. In order to indicate a series of people or
animals one behind the other, the same figure was repeated slightly
displaced. Modern painting, as well as most Japanese and Chinese
painting, is also conceptual (plate xxvir).

An optical system of perspective, on the other hand, attempts to
convey the same impression to the eye as would the scene itself.
Although Greek and Roman painting was primarily optical, the
influence of Christian mysticism turned artists back to a conceptual
system, which prevailed throughout the Middle Ages. The early
Christian and medieval artists were content to paint in symbolic
terms, that is, their settings and subjects were intended to illustrate
religious themes and induce religious feelings rather than to rep-
resent real people in the actual and present world. The people and
objects were highly stylized and drawn as though they existed in a
flat, two-dimensional vacuum. Figures that should be behind one
another were usually alongside or above. Stiff draperies and angular
attitudes were characteristic. The backgrounds of the paintings were
almost always of a solid color, usually gold, as if to emphasize that
the subjects had no connection with the real world.

The early Christian mosaic ‘Abraham with Angels’ (plate vi),
a typical example of the Byzantine influence, illustrates the disin-
tegration of ancient perspective. The background is essentially neu-
tral. The earth, tree, and bushes are artificial and lifeless, the tree
being shaped peculiarly to fit the border of the picture. There is no
foreground or base on which the figures and objects stand. The
figures are not related to each other and, of course, spatial relations
are ignored because measures and sizes were deemed unimportant.
The little unity there is in the picture is supplied by the gold back-
ground and the color of the objects.

Though remnants of an optical system used by the Romans were
sometimes present in medieval painting, this Byzantine style pre-
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dominated. An excellent example, indeed one that is regarded as
the flower of medieval painting, is “The Annunciation’ (plate vir)
by Simone Martini (1285-1344). The background is gold. There is
no indication of visual perception. The movement in the painting
is from the angel to the Virgin and then back to the angel. Though
there is loveliness of color, surface, and sinuous line, the figures
themselves are unemotional and arouse no emotional response in the
onlooker. The effect of the whole is mosaic-like. Perhaps the only
respect in which this painting makes any advance toward realism is
in its use of a ground plane or floor on which objects and figures rest
and which is distinct from the gilt background.

Characteristic Renaissance influences which steered the artists
toward realism and mathematics began to be felt near the end of
the thirteenth century, the century in which Aristotle became widely
known by means of translations from the Arabic and the Greek. The
painters became aware of the lifelessness and unreality of medieval
painting and consciously sought to modify it. Efforts toward natural-
ism appeared in the use of real people as subjects of religious themes,
in the deliberate use of straight lines, multiple surfaces, and simple
forms of geometry, in experiments with unorthodox positions of the
figures, in attempts to render emotions, and in the depiction of
drapery falling and folding around parts of bodies as it actually does
rather than in the flat folds of the conventional medieval style.

The essential difference between medieval and Renaissance art is
the introduction of the third dimension, that is, the rendering of
space, distance, volume, mass, and visual effects. The incorporation
of three-dimensionality could be achieved only by an optical system
of representation, and conscious efforts in this direction were made
by Duccio (1255-1319) and Giotto (12%76-1336), at the beginning of
the fourteenth century. Several devices appeared in their works that
are at least worth noticing as stages in the development of a mathe-
matical system. Duccio’s ‘Madonna in Majesty’ (plate 1x) has several
interesting features. The composition, first of all, is severely simple
and symmetrical. The lines of the throne are made to converge in
pairs and thus suggest depth. The figures on either side of the throne
are presumably standing on one level but they are painted one above
the other in several layers. This manner of depicting depth is known
as terraced perspective, a device very common in the fourteenth cen-
tury. The drapery is somewhat natural as exemplified by the folds
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over the Madonna’s knee. Also there is some feeling for solidity and
space and some emotion in the faces. The picture as a whole still
contains much of the Byzantine tradition. There is a liberal use of
gold in the background and in the details. The pattern is still mosaic-
like. Because the throne is not properly foreshortened to suggest
depth, the Madonna does not appear to be sitting on it.

Even more significant is Duccio’s “The Last Supper’ (plate x). The
scene is a partially boxed-in room, a background very commonly
used during the fourteenth century and one that marks the transi-
tion from interior to exterior scenes. The receding walls and reced-
ing ceiling lines, somewhat foreshortened, suggest depth. The parts
of the room fit together. Several details about the treatment of the
ceiling are important. The lines of the middle portion come together
in one area, which is called the vanishing area for a reason that will
be made clear later. This technique was consciously used by many
painters of the period as a device to portray depth. Second, lines
from each of the two end-sections of the ceiling, which are symmet-
rically located with respect to the center, meet in pairs at points
which lie on one vertical line. This scheme, too, known as vertical
or axial perspective, was widely used to achieve depth. Neither
scheme was used systematically by Duccio but both were developed
and applied by later painters of the fourteenth century. Suggestions
of the real world, such as the bushes on the left side of the painting,
should be noticed.

Unfortunately, Duccio did not treat the whole scene in “The Last
Supper’ from a single point of view. The lines of the table’s edges
approach the spectator, contrary to the way in which the eye would
see them. The table appears to be higher in the back than in the
front and the objects on the table do not seem to be lying flat on it.
In fact they project too far into the foreground. Nevertheless, there
is a sense of realism particularly in regard to the larger features of
the painting.

It can be said that three-dimensionality is definitely present in
Duccio’s work. The figures have mass and volume and are related
to each other and to the composition as a whole. Lines are used in
accordance with some particular schemes, and planes are foreshort-
ened. Light and shadow are also used to suggest volume.

The father of modern painting was Giotto. He painted with direct
reference to visual perceptions and spatial relations and his results
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tended toward a photographic copy. His figures possessed mass, vol-
ume, and vitality. He chose homelike scenes, distributed his figures
in a balanced arrangement, and grouped them in a manner agree-
able to the eye.

One of Giotto’s best paintings, “The Death of St. Francis’ (plate
x1), like Duccio’s “The Last Supper,” employs the popular transi-
tional device, a partially boxed-in room. The room does suggest a
localized three-dimensional scene as opposed to a flat two-dimen-
sional scene existing nowhere. The careful balance of the component
objects and figures is clearly intended to appeal to the eye. Equally
obvious are the relations of the figures to each other though none
is related to the background. In this painting and in others by Giotto,
the portions of the rooms or buildings shown seem to stand on the
ground. Foreshortening is employed to suggest depth.

Giotto is not usually consistent in his point of view. In his ‘Sa-
lome’s Dance’ {plate x11), the two walls of the alcove on the right do
not quite jibe with each other, nor do the table and ceiling of the
dining room. Nevertheless, the three-dimensionality of this painting
can no longer be overlooked. Rather interesting and significant is
the bit of architecture at the left. The real world is introduced even
at the expense of irrelevance.

Giotto was a key figure in the development of optical perspective.
Though his paintings are not visually correct and though he did
not introduce any new principle, his work on the whole shows great
improvement over that of his predecessors. He himself was aware of
the advances he had made, for he often went to unnecessary lengths
in order to display his skill. This is almost certainly the reason for
the inclusion of the tower in his ‘Salome’s Dance.

Advances in technique and principles may be credited to Ambro
gio Lorenzetti (active 1323-48). He is noteworthy for the organiza-
tion of his themes in realistic, localized areas; his lines are vigorous
and his figures robust and humanized. Progress is evident in the
‘Annunciation’ (plate xur). The ground plane on which the figures
rest is now definite and clearly distinguished from the rear wall.
The ground also serves as a measure of the sizes of the objects and
suggests space extending back to the rear. A second major advance
is that the lines of the floor which recede from the spectator meet
at one point. Finally, the blocks are foreshortened more and more
the farther they are in the background. On the whole Lorenzetti
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handled space and three-dimensionality as well as anyone in the
fourteenth century. Like Duccio and Giotto he failed to unite all the
elements in his paintings. In the ‘Annunciation’ the wall and floor
are not related. Nevertheless, there is good intuitive, though not
mathematical, handling of space and depth.

With Lorenzetti we reach the highest level attained by the Renais-
sance artists before the introduction of a mathematical system of
perspective. The steps made thus far toward the development of a
satisfactory optical system show how much the artists struggled with
the problem. It is evident that these innovators were groping for an
effective technique.

In the fifteenth century the artists finally realized that the problem
of perspective must be studied scientifically and that geometry was
the key to the problem. This realization may have been hastened
by the study of ancient writings on perspective which had recently
been exhumed along with Greek and Roman art. The new approach
was, of course, motivated by far more than the desire to attain
verisimilitude. The greater goal was understanding of the structure
of space and discovery of some of the secrets of nature. This was an
expression of the Renaissance philosophy that mathematics was the
most effective means of probing nature and the form in which the
ultimate truths would be phrased. These men who explored nature
with techniques peculiar to their art had precisely the spirit and
attitude of those other investigators of nature who founded modern
science by means of their mathematics and experiments. In fact, dur-
ing the Renaissance, art was regarded as a form of knowledge and a
science. It aspired to the status of the four Platonic ‘arts’: arithmetic,
geometry, harmony (music), and astronomy. Geometry was expected
to supply the badge of respectability. Equally enticing as a goal in
the development of a scientific system of perspective was the pos-
sibility of achieving unity of design.

The science of painting was founded by Brunelleschi, who worked
out a system of perspective by 1425. He taught Donatello, Masaccio,
Fra Filippo, and others. The first written account, the della Pittura
of Leone Battista Alberti, was published in 1485. Alberti said in this
treatise on painting that the first requirement of the painter is to
know geometry. The arts are learned by reason and method; they
are mastered by practice. In so far as painting is concerned, Alberti
believed that nature could be improved on with the aid of mathe-
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matics, and toward this end he advocated the use of the mathemati-
cal system of perspective known as the focused system.

The great master of perspective and, incidentally, one of the best
mathematicians of the fifteenth century, was Piero della Francesca.
His text De Prospeitiva Pingendi added considerably to Alberti’s
material, though he took a slightly different approach. In this book
Piero came close to identifying painting with perspective. During
the last twenty years of his life he wrote three treatises to show how
the visible world could be reduced to mathematical order by the
principles of perspective and solid geometry.

The most famous of the artists who contributed to the science of
perspective was Leonardo da Vinci. This striking figure of incredible
physical strength and unparalleled mental endowment prepared
for painting by deep and extensive studies in anatomy, perspective,
geometry, physics, and chemistry. His attitude toward perspective
was part and parcel of his philosophy of art. He opened his T'rattato
della Pittura with the words, ‘Let no one who is not a mathematician
read my works.” The object of painting, he insisted, is to reproduce
nature and*the merit of a painting lies in the exactness of the repro-
duction. Even a purely imaginative creation must appear as if it
could exist in nature. Painting, then, is a science and like all sciences
must be based on mathematics, ‘for no human inquiry can be called
science unless it pursues its path through mathematical exposition
and demonstration.” Again, ‘The man who discredits the supreme
certainty of mathematics is feeding on confusion, and can never
silence the contradictions of sophistical sciences, which lead to eter-
nal quackery.” Leonardo scorned those who thought they could ig-
nore theory and produce art by mere practice: rather, ‘Practice must
always be founded on sound theory.’ Perspective he described as the
‘rudder and guide rope’ of painting.

The most influential of the artists who wrote on perspective was
Albrecht Diirer. Diirer learned the principles of perspective from
the Italian masters and returned to Germany to continue his studies.
His popular and widely read treatise Underweysung der Messung
mit dem Zyrkel und Rychtscheyd (1528) affirmed that the perspec-
tive basis of a picture should not be drawn free-hand but constructed
according to mathematical principles. Actually, the Renaissance
painters were incomplete in thejr treatment of the principles of
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perspective. Mathematicians of a later period, notably Brook Taylor
and J. H. Lambert, wrote definitive works.

It is fair to state that almost all the great artists of the fifteenth
and early sixteenth centuries sought to incorporate mathematical

Figure 19. Diirer: The Designer of the Sitting Man

principles and mathematical harmonies in their paintings, with
realistic perspective a specific and major goal. Signorelli, Bramante,
Michelangelo, and Raphael, among others, were deeply interested
in mathematics and in its application to art. They deliberately exe-
cuted difficult postures, developed and handled foreshortening with
amazing facility, and at times even suppressed passion and feeling,
all in order to display the scientific elements in their work. These
masters were aware that art, with all its use of individual imagina-
tion, is subject to laws.
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The basic principle of the mathematical system which these artists
developed may be explained in terms used by Alberti, Leonardo,
and Direr. These men imagined that the artist’s canvas is a glass
screen through which he looks at the scene to be painted, just as we
might look through a window to a scene outside. From one eye,
which is held fixed, lines of light are imagined to go to each point
of the scene. This set of lines is called a projection. Where each of
these lines pierces the glass screen a point is marked on the screen.
This set of points, called a section, creates the same impression on
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Figure zo. Diirer: The Designer of the Lying Woman

the eye as does the scene itself. These artists then decided that real-
istic painting must produce on canvas the location, size, and rela-
tive positions of objects exactly as they would appear on a glass
screen interposed between the eye and the scene. In fact, Alberti
proclaimed that the picture is a section of the projection.

This principle is illustrated in several woodcuts executed by
Diirer. The first two of these (figs. 19 and 20) show the artist hold-
ing one eye at a fixed point while he traces on a glass screen, or on
paper which is ruled in squares corresponding to squares on the
glass screen, the points in which lines of light from the eye to the
scene cut the screen. The third of these woodcuts (fig. 21) shows
how the artist can trace the correct pattern on the glass screen even
though he is supposedly far from the screen. In this woodcut the eye
viewing the scene is effectively at the point where the rope is knotted
to the wall. The fourth woodcut (fig. 22) shows a pattern traced out
on a screem.

Since canvas is not transparent and since an artist may wish to
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paint a scene that exists only in his imagination, he cannot paint a
Diirer ‘section’ simply by tracing points. He must have rules to guide

Figure 21. Diirer: The Designer of the Can

him. And so the writers on perspective derived from the principle
of projection and section a set of theorems that comprise the system

Figure 22. Diirer: The Designer of the Lute

of focused perspective. This is the system that has been adopted by
nearly all artists since the Renaissance.
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What are the principal theorems or rules of the mathematical
science of perspective? Suppose the canvas is held in the normal ver-
tical position. The perpendicular from the eye to the canvas, or an
extension of it, strikes the canvas at a point called the principal
vanishing point (the reason for the term will be apparent shortly).
The horizontal line through the principal vanishing point is called
the horizon line because, if the spectator were looking through the
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Figure 23. Sketch of a hallway according to the focused system of perspective

canvas to open space, the horizon line would correspond to the
actual horizon. These concepts are illustrated in figure 2g. This
figure shows a hallway viewed by a person whose eye is at point O
(not shown) which lies on a line perpendicular to the page and
through the point P. P is the principal vanishing point and the
line D.PD; is the horizon line.

The first essential theorem is that all horizontal lines in the scene
that are perpendicular to the plane of the canvas must be drawn
on the canvas so as to meet at the principal vanishing point. Thus
lines such as A4’, EE’, DD, and others (fig. 23) meet at P, It may
seem incorrect that lines which are actually parallel should be
drawn to meet. But this is precisely how the eye sees parallel lines,
as the familiar example of the apparently converging railroad tracks
illustrates. It is perhaps clear now why the point P is called a van-
ishing point. There is no point corresponding to it in the actual
scene, since the parallel lines of the scene itself do not meet.
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Another theorem to be deduced from the general principle that
the picture should be a section of the projection is that any set of
parallel horizontal lines which are not perpendicular to the plane
of the canvas but meet it at some angle must be drawn so as to con-
verge to a point which lies somewhere on the horizon line depend-
ing on the angle which these lines make with the plane of the can-
vas. Among such sets of horizontal parallel lines there are two very
important ones. Lines such as AB” and EK of figure 24, which in the
actual scene are parallel and make a 45° angle with the plane of the
canvas meet at a point Dy, which is called a diagonal vanishing point.
The distance PD; must equal the distance OP, that is, the distance
from the eye to the principal vanishing point. Similarly parallel
horizontal lines such as B4’ and FL., which in the actual scene make
a 135° angle with the canvas, must be drawn so as to meet at a sec-
ond diagonal point, D, in figure 23, and PD, must also equal OP.
Parallel lines of the actual scene that rise or fall as they recede from
the spectator must also meet in one point, which will be above or
below the horizon line. This point would be the one in which a
line from the eye parallel to the lines in question pierces the canvas.

The third theorem that follows from the general principle of pro-
jection and section 1s that parallel horizontal lines of the scene which
are parallel to the plane of the canvas are to be drawn horizontal
and parallel, and that vertical parallel lines are to be drawn vertical
and parallel. Since to the eye all sets of parallel lines appear to con-
verge, this third theorem is not in harmony with visual perception.
This inconsistency will be discussed later.

Long before the creation of the system of focused perspective artists
had realized that distant objects should be drawn foreshortened. They
had great difficulty, however, in determining the proper amount of
foreshortening. The new system provided the requisite theorems
which may also be deduced from the general principle that the paint-
ing is a section of the projection. In the case of the square floor blocks
in figure 23, the proper handling of the diagonal lines such as AB’,
BA’, EK, and FL determines the correct foreshortening.

There are many other theorems for the trained artist to use if he
wishes to achieve the realism the focused system permits. Pursuit of
these specialized results, however, would carry us too far afield. There
is one point that is implicit in what has been discussed and that is of
importance to the layman viewing a painting designed in accordance
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with the focused system. The position of the artist’s eye is inseparable
from the design of the painting. To obtain the correct effect the
spectator should view the painting from this position, that is, the
spectator’s eye should be at the level of the principal vanishing point
and directly in front of it at a distance equal to the distance from the
principal vanishing point to either diagonal vanishing point. Actu-
ally it would be well if paintings were hung so that they might be
raised or lowered to suit the viewer’s height.

Before we examine some great paintings designed according to the
system of focused perspective we should point out that the system
does not furnish a faithful reproduction of what the eye sees. The
principle that a painting must be a section of a projection requires,
as already stated, that horizontal parallel lines which are parallel to
the plane of the canvas as well as vertical parallel lines, are to be
drawn parallel. But the eye viewing such lines finds that they appear
to meet just as other sets of parallel lines do. Hence in this respect at
least the focused system is not visually correct. A more fundamental
criticism is the fact that the eye does not see straight lines at all. The
reader may convince himself of this fact if he will imagine himself
in an airplane looking down on two perfectly parallel, horizontal
railroad tracks. In each direction the tracks appear to meet on the
horizon. Two straight lines, however, can meet in only one point.
Obviously, then, since the tracks meet at the two horizon points, to
the eye they must be curves. The Greeks and Romans had recognized
that straight lines appear curved to the eye. Indeed, Euclid said so in
his Optics. But the focused system ignores this fact of perception.
Neither does the system take into account the fact that we actually
see with two eyes, each of which receives a slightly different impres-
sion. Moreover, these eyes are not rigid but move as the spectator
surveys a scene. Finally, the focused system ignores the fact that the
retina of the eye on which the light rays impinge is a curved surface,
not a photographic plate, and that seeing is as much a reaction of the
brain as it is a.purely physiological process.

In view of these deficiencies in the system, why did the artists adopt
it? It was, of course, a considerable improvement over the inadequate
systems known to the fourteenth century. More important to the fif-
teenth- and sixteenth-century artists was the fact that the system was
a thoroughly mathematical one. To people already impressed with
the importance of mathematics in understanding nature, the attain-
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ment of a satisfactory mathematical system of perspective pleased
them so much that they were blind to all its deficiencies. In fact, the
artists believed it to be as true as Euclidean geometry itself.

Let us now examine the progeny of the wedding of geometry and
painting. One of the first painters to apply the science of perspective
mitiated by Brunelleschi was Masaccio (1401-28). Although later
paintings will show more clearly the influence of the new science,
Masaccio’s “The Tribute Money’ (plate X1v) is far more realistic than
anything done earlier. Vasari said that Masaccio was the first artist
to attain the imitation of things as they really are. This particular
painting shows great depth, spaciousness, and naturalism. The indi-
vidual figures are massive; they exist in space and their bodies are
more real than Giotto’s. The figures stand on their own feet. Masac-
cio was also the first to use a technique which supplements geometry,
namely, aerial perspective. By diminishing the intensity of the color
as well as the size of objects farther in the background, distance is
suggested. Masaccio was, in fact, a master at handling light and shade.

One of the major contributors to the science of perspective was
Uccello (1397-1475). His intexest in the subject was so intense that
Vasari said Uccello ‘would remain the long night in his study to work
out the vanishing points of his perspective’ and when summoned to
bed by his wife replied, ‘How sweet a thing is this perspective.” He
took pleasure in investigating difficult problems, and he was so dis-
tracted by his passion for exact perspective that he failed to apply his
full powers to painting. Painting was an occasion for solving prob-
lems and displaying his mastery of perspective. Actually his success
was not complete. His figures are generally crowded on one another
and his mastery of depth was imperfect.

Unfortunately, the best examples of Uccello’s perspective have
been so much damaged by time that they cannot be reproduced. One
scene from the sequence entitled ‘Desecration of the Host’ does give
some indication of his work (plate xv). His ‘Perspective Study of a
Chalice’ (plate xv1) shows the complexity of surfaces, lines, and curves
involved in an accurate perspective drawing.

The artist who perfected the science of perspective was Piero della
Francesca (1416-g2). This highly intellectual painter had a passion
for geometry, and planned all his works mathematically to the last
detail. The placement of each figure was calculated so as to be correct
in relation to other figures and to the organization of the painting
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as a whole. He even used geometrical forms for parts of the body and
objects of dress and he loved smooth curved surfaces and solidity.

Piero’s “The Flagellation’ (plate xvi) is a masterpiece of perspec-
tive. The choice of principal vanishing point and the accurate use of
the principles of the focused system tie the characters in the rear of
the courtyard to those in front, while the objects are all accommo-
dated to the clearly delimited space. The diminution of the black
inlays on the marble floor is also precisely calculated. A drawing in
Piero’s book on perspective shows the immense labor which went
into this painting. Here as well as in other paintings Piero used aerial
perspective to enhance the impression of depth. The whole painting
is so carefully planned that movement is sacrificed to unity of design.

Piero’s ‘Resurrection’ (plate xvi) is judged by some critics to be
one of the supreme works of painting in the entire world. It is almost
architectural in design. The perspective is unusual: there are two
points of vision and therefore two principal vanishing points. As is
evident from the fact that we see the necks of two of the sleeping
soldiers from below, one principal vanishing point is in the middle
of the sarcophagus. Then unconsciously the eye is carried up to the
second principal vanishing point which is in the face of Christ. The
two pictures, that is the lower and upper parts, are separated by a
natural boundary, the upper edge of the sarcophagus, so that the
change in point of view is not disturbing. By making the hills rise
rather sharply Piero unified the two parts at the same time that he
supplied a natural-appearing background for the upper one. It has
sometimes been said that Piero’s intense love for perspective made
his pictures too mathematical and therefore cool and impersonal.
However, a look at the sad, haunting, and forgiving countenance of
Christ shows that Piero was capable of expressing delicate shades of
emotion.

Leonardo da Vinci (1452-1519) produced many excellent examples
of perfect perspective. This truly scientific mind and subtle aesthetic
genius made numerous detailed studies for each. painting (plate x1x).
His best-known work and perhaps the most famous of all paintings
is an excellent example of perfect perspective. The ‘Last Supper’
(plate xx) is designed to give exactly the impression that would be
made on the eye in real life. The viewer feels that he is in the room.
The receding lines on the walls, floor, and ceiling not only convey
depth clearly but converge to one point deliberately chosen to be
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in the head of Christ so that attention focuses on Him. It should be
noticed, incidentally, that the twelve apostles are arranged in four
groups of three each and are symmetrically disposed on each side of
Christ. The figure of Christ Himself forms an equilateral triangle;
this element of the design was intended to express the balance of
sense, reason, and body. Leonardo’s painting should be compared
with Duccio’s “The Last Supper’ (plate x).

A few more examples of paintings that incorporate excellent per-
spective will indicate perhaps the widespread appeal and application
of the new science. Though Botticelli (1444-1510) is most widely
known for such paintings as ‘Spring’ and the ‘Birth of Venus’ where
the artist expresses himself in pattern, lines, and curves and where
realism is not an objective, he was capable of excellent perspective.
One of the finest of his numerous works, “The Calumny of Apelles’
(plate xx1), shows his mastery of the science. Each object is sharply
drawn. The various parts of the throne and of the buildings are well
executed and the foreshortening of all the objects is correct.

A painter who exhibited great skill in perspective was Mantegna
(1481-1516). Anatomy and perspective weré ideals with him. He
chose difficult problems and used perspective to achieve harsh realism
and boldness. In his ‘St. James Led to Execution’ (plate xxi1) he
deliberately chose an eccentric point of view. The principal vanish-
ing point is just below the bottom of the painting and to the right
of center. The whole scene is successfully treated from this unusual
point of view.

The sixteenth century witnessed the culmination of the great
Renaissance developments in realistic painting. The masters dis-
played perfect perspective and form, and emphasized space and color.
The ideal of form was loved so much that artists were indifferent to
content. The distinguished pupil of Leonardo and Michelangelo,
Raphael (1483-1520), supplied many excellent examples of the ideals,
standards, and accomplishments toward which the preceding cen-
turies had been striving. His ‘School of Athens’ (plate xx111) portrays
a dignified architectural setting in which harmonious arrangement,
mastery of perspective, and exactness of proportions are clear. This
painting is of interest not merely because of its superb treatment of
space and depth, but because it evidences the veneration that the
Renaissance intellectuals had for the Greek masters. Plato and Aris-
totle, left and right, are the central figures. At Plato’s left is Socrates.
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In the left foreground Pythagoras writes in a book. In the right fore-
ground Fuclid or Archimedes stoops to demonstrate some theorem.
To the right of this figure Ptolemy holds a sphere. Musicians, arith-
meticians, and grammarians complete the assemblage.

The Venetian masters of the sixteenth century subordinated line
to color and light and shade. Nevertheless they too were masters of
perspective. The expression of space is fully three-dimensional, and
organization and perspective are clearly felt. Tintoretto (1518-g4)
is representative of this school. His ‘Transfer of the Body of St. Mark’
(plate xx1v) shows perfect treatment of depth; the foreshortening of
the figures in the foreground should be noticed.

We shall take time for just one more example. We have already
mentioned Diirer (1472-1528) as one of the writers on the subject of
perspective who greatly influenced painters north of the Alps. His
‘St. Jerome in his Study’ (plate xxv), an engraving on copper, shows
what Diirer himself could do in practice. The principal vanishing
point is at the right center of the picture. The effect of the design is
to make the spectator feel that he is in the room just a few feet away
from St. Jerome.

The reader may now test his acuteness on the subject of perspective
by seeing how many absurdities he can detect in William Hogarth’s
steel engraving entitled ‘False Perspective’ (plate xxvr).

The examples given above of paintings which use the focused sys-
tem of perspective could be multiplied a thousandfold. These few
are sufficient, however, to illustrate how the use of mathematical per-
spective emancipated figures from the gold background of medieval
painting and set them free to roam the streets and hills of the natural
world. The examples also illustrate a secondary value in the use of
focused perspective, namely, that of promoting the unity of compo-
sition of the painting. Our account of the rise of this system may have
shown, too, how the theorems of mathematics proper and a philos-
ophy of nature in which mathematics was dominant determined the
course of Western painting. Though modern painting has departed
sharply from a veridical description of nature, the focused system is
still taught in the art schools and is applied wherever it seems im-
portant to achieve a realistic effect.
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Science Born of Art: Projective Geometry

The moving power of mathematical invention is not
reasoning but imagination. A. DE MORGAN

The most original mathematical creation of the seventeenth century,
a century in which science provided the dominant motivation for
mathematical activity, was inspired by the art of painting. In the
course of their development of the system of focused perspective the
painters introduced new geometrical ideas and raised several ques-
tions that suggested an entirely new direction for research. In this
way the artists repaid their debt to mathematics.

The first of the ideas arising out of the work on perspective is that
there is a distinction between the world accessible to man’s sense of
touch and the world he sees. Correspondingly, there should be two
geometries, a tactile geometry and a visual geometry. Euclidean ge-
ometry is tactile because its assertions agree with our sense of touch
but not always with our sense of sight. For example, Euclid deals with
lines that never meet. The existence of such lines can be vouched for
by the hands but not by the eye. We never see parallel lines. The
rails do appear to meet off in the distance.

There are many other reasons for characterizing Euclidean geom-
etry as a tactile geometry. For example, it treats congruent figures,
or figures that can be superposed one on the other. Superposition is
an act performed by the hands. Also, the theorems of Euclidean ge-
ometry frequently deal with measurement, another act performed by
the hand. Finally, Euclid’s world was finite, a world virtually acces-
sible to the sense of touch. Thus he did not consider a straight line
in its entirety but rather regarded it as a segment that can be ex-
tended as far as is necessary in either direction. There was no attempt
to consider what happens at great distances from a given figure.

144
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Since Fuclidean geometry could reasonably be regarded as dispos-
ing of problems created by the sense of touch, it remained to investi-
gate the geometry of the sense of sight. Toward this end the work on
perspective offered a second major suggestion. The basic idea in the
system of focused perspective is that of projection and section. A pro-
jection is a set of lines of light from the eye to the points of an object

Figure 24. Two different sections of the same projection

or scene; a section is the pattern formed by the intersection of these
lines with a glass sheet placed between the eye and the object viewed.
Though the section on a glass sheet will vary in size and shape with
the position and angle at which the sheet is held, each of these sec-
tions (fig. 24) creates the same impression on the eye as does the
object itself.

This fact suggests several large mathematical questions. Suppose
we consider two different sections of the same projection, Since they
create the same impression on the eye they should have many geo-
metrical properties in common. Just what properties do the sections
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have in common? Also, what properties do the object and a section
determined by it have in common? Finally, if two different observers
view the same scene, two different projections are formed (fig. 25).
If a section of each of these projections is made, these two sections
should possess, in view of the fact that they are determined by the
same scene, common geometrical properties. What are they?

Figure 25. Sections of two different projections of the same scene

Still another direction for research was suggested to the mathema-
tician by the work on perspective. The artist, we saw, cannot paint
objects as they are. Instead he must draw parallel lines so that they
converge on the canvas; he must also introduce foreshortening and
other devices in order to give the eye the illusion of reality. To ex-
ecute this plan the artist needs theorems that give him the location
of lines and tell him what other lines any given line must intersect.
Mathematicians were thereby motivated to search for theorems on
the intersection of lines and of curves.

The first major mathematician to explore the suggestions arising
out of the work on perspective was the self-educated architect and
engineer, Girard Desargues (1593-1662). His motive in undertaking
these studies was to help his colleagues in engineering, painting, and
architecture. ‘I freely confess,” he wrote, ‘that I never had taste for
study or rescarch either in physics or geometry except in so far as
they could serve as a means of arriving at some sort of knowledge
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of the proximate causes . . . for the good and convenience of life,
in maintaining health, in the practice of some art . . . having ob-
served that a good part of the arts is based on geometry, among others
the cutting of stones in architecture, that of sun-dials, that of per-
spective in particular.” He began by organizing numerous useful the-
orems and disseminated these findings through lectures and hand-
bills. Later he wrote a pamphlet on perspective which attracted very
little attention.

Desargues advanced from this first work to highly original math-
ematical creation. His chief contribution, the foundation of projec-
tive geometry, appeared in 1639 but, like his services to artists, was
hardly noticed. All the printed copies of this book were lost. Though
a few of his contemporaries appreciated his work, most either ignored
or mocked it. After devoting a few more years to architectural and
engineering problems Desargues retired to his estate. T'wo of his con-
temporaries, Philippe de la Hire and Blaise Pascal, did study and
advance Desargues’ brain child before the subject passed into a long
period of oblivion. Fortunately La Hire made a manuscript copy of
Desargues’ book and this record, discovered by chance two hundred
years later, tells us what Desargues contributed.

The most startling, though not the most significant, fact about the
new geometry of Desargues is that it contains no parallel lines. Just
as the representation of parallel lines on canvas requires their meet-
ing at a point, so parallel lines in space (in Fuclid’s sense) are re-
quired by Desargues to meet in a point which may be infinitely dis-
tant but which is nevertheless assumed to exist. This point is the
counterpart in real space to the point where the parallel lines, if
drawn on canvas, intersect. The addition of this ‘point at infinity’
represents no contradiction of Euclid’s geometry but rather an exten-
sion, one that conforms to what the eye sees.

The basic theorem of projective geometry, a theorem now funda-
mental in all of mathematics, comes from Desargues and is named
after him. It illustrates how mathematicians responded to the ques-
tions raised by perspective.

Suppose the eye at point O looks at a triangle ABC (fig. 26). The
lines from O to the various points on the sides of the triangle consti-
tute, as we know, a projection. A section of this projection will then
contain a triangle A’B’C’, where A’ corresponds to 4, B’ to B, and
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C’ to C. The two triangles, ABC and A’B’C’ are said to be perspective
from the point O. Desargues states his theorem as follows:

The pairs of corresponding sides, AB and A’B’, BC and B’C’, and AC
and 4’C’ of two triangles perspective from a point meet, respectively, in
three points that lie on one straight line.

With specific reference to our figure the theorem says that if we pro-
long sides AC and 4’C’, they will meet in a point P; sides 4B and

Figure 26. Desargues’ theorem

A’B’ prolonged will meet in a point Q; and sides BC and B’C’ pro-
longed will meet in a point R. And P, Q, and R will lie on a straight
line. The theorem holds whether the triangles lie in the same or in
different planes.

Equally typical of theorems in projective geometry is one proved,
at the age of sixteen, by the precocious French thinker, Pascal, with
whom we shall deal more fully later. This theorem was incorporated
by Pascal in an essay on conics, an essay so brilliant that Descartes
could not believe it was written by one so young. Pascal’s theorem,
like Desargues’, states a property of a geometrical figure that is com-
mon to all sections of any projection of that figure. In more math-
ematical language, it states a property of a geometrical figure that is
invariant under projection and section.

Pascal had this to say: Draw any six-sided polygon (hexagon) with
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vertices on a circle and letter the vertices 4, B, C, D, E, F (fig. 27).
Prolong a pair of opposite sides, AB and DE for example, until they
meet in a point P. Prolong another pair of opposite sides until they
meet in a point Q. Finally, prolong the third pair until they meet in
a point R. Then, Pascal asserts, P, Q, and R will always lie on a
straight line. In other words,

If a hexagon is inscribed in a circle, the pairs of opposite sides intersect,
respectively, in three points which lie on one straight line.

R P Q

[
Figure 27. Pascal’s theorem

The concepts of projective geometry illuminate even familiar
mathematics. As we saw in Chapter 1v, the Greeks knew that the
circle, parabola, ellipse, and hyperbola are sections of a cone (fig. ¥
in Chapter 1v). If we think of an eye placed at O, the vertex of the
cone, and if we think of lines such as 04 on the surface of the cone
as lines of light from O to points on the circle ABC, then the lines
form a projection and the circle, parabola, ellipse, and hyperbola
appear as sections made by various planes cutting this projection.
The reader can verify this by focusing a flashlight on a circular piece
of wire and by observing the shadow cast by the wire on a sheet of
paper. When the paper is turned the section will change and give
the various conic sections. Because the four curves can all be ob-
tained as sections of a cone and because Pascal’s theorem states a
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fact about the circle that remains invariant under projection and
section, it follows that Pascal’s theorem applies to all the conics.

We shall consider just one more theorem of projective geometry.
Pascal’s theorem tells us something about a hexagon which is in-
scribed in a circle. C. J. Brianchon, who worked during the early
nineteenth-century revival of projective geometry, created a famous
theorem that describes a property of a hexagon circumscribed about
a circle. His theorem (fig. 28) states that

If a hexagon is circumscribed about a circle the lines joining opposite

vertices meet in one point.
/ a \

Figure 28. Brianchon’s theorem

As we might expect, Brianchon’s theorem applies not only to the
circle but to any conic section.

The theorems of Desargues, Pascal, and Brianchon are indications
of the type of theorem proved in projective geometry and they must
suffice as illustrations. We may characterize all of the theorems in
this field by saying that they center about the ideas of projection
and section and state properties of geometric figures that are com-
mon to sections of the same projection or different projections of
the same object.

Whereas the patronage of artists by princes, secular and clerical,
made possible the extraordinary activity in painting and subse-
quently led to projective geometry, it was the expanding needs of
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the rapidly rising middle class of the period that prompted an in-
terest in map-making. The search for trade routes in the sixteenth
century involved extensive geographical explorations, and maps were
needed to assist in the explorations and to keep pace with the dis-
coveries.

It must not be inferred from this that preceding civilizations had
not made maps. Indeed the Greeks, Romans, and Arabians made
maps that were accepted for centuries. The explorations of the fif-
teenth and sixteenth centuries, however, revealed the inaccuracies
and inadequacies of the existing maps and created a demand for
better and more up-to-date ones. Moreover, the revival of the idea
that the Farth is a sphere called for maps drawn on that basis. It
raised such questions as how a course should be set out on a plane
map so that it corresponds to the shortest distance on. the sphere.
The printing of maps was begun in the second half of the fifteenth
century, and the great commercial centers, Antwerp and Amsterdam,
soon became centers for the art of map-making.

Though the practical interests of map-makers are quite remote
from the aesthetic interests of painters, both activities are intimately
related through mathematics. Mathematically, the problem of mak-
ing a map is that of somehow projecting figures from a sphere onto
a flat sheet, the latter being but the section of the projection. Hence
the principles involved here are the same as those in the sciences
of perspective and projective geometry. In the sixteenth century,
map-makers employed these and related ideas to develop new meth-
ods, the most famous of which is the one developed by the Flemish
cartographer, Gerard Mercator (1512-g4), and still known as Mer-
cator’s projection. In the next century La Hire, among others, ap-
plied some of Desargues’ ideas to problems of map-making.

The major difficulty in map-making arises out of the fact that a
sphere cannot be slit open and laid out flat without badly distorting
the surface. The reader can confirm this by slitting and attempting
to flatten out a whole orange peel without stretching or cracking it.
Either distances, or directions, or areas must be distorted to produce
a flat map; none is an exact reproduction of the relations that exist
on a sphere. To use a map for information about distances, say, the
relation between distances measured on the map and the correspond-
ing distances on the sphere must be known. Hence in making maps
methods must be used that relate the sphere and the flat surface
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systematically so that knowledge about the sphere may be deduced
from observations made on the flat map.

We shall mention some of the simpler methods of map-making.
It should be understood that the explanations given below cover
only the geometrical principles involved in these methods. To show
how measurements made on a particular map may be converted into
corresponding information about the sphere would require the in-
troduction of much more mathematics.

«—TANGENT
PLANE

Figure 29. The principle of the gnomonic projection

A simple scheme of map-making is known as the gnomonic pro-
jection. We imagine that an eye is placed at the center of the Earth
and that it is looking at the Western Hemisphere. Each line of sight
is continued past the Earth until it reaches a point on a plane that
is tangent to the Earth’s surface at some convenient point in the
Western Hemisphere (fig. 29g). If this point is on the equator we
obtain a map such as that shown in figure go.

It will be noticed that the meridians of longitude appear as
straight lines. In fact any great circle on the Earth, that is any circle
whose center is the center of the Earth, such as the equator or a
longitude circle, will project into a straight line under this scheme.
This property is quite important. The shortest distance along the
surface of the Farth between two points on the surface is given by
the arc of the great circle joining these points. This arc will project
into a straight-line segment joining the projections of the two points.
Since ships and planes generally follow great circle routes, these
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routes are readily plotted as straight-line paths on the map. In addi-
tion, all points on the map have the correct directions from the
center and the correct directions from each other. A bad feature of
this method of map projection is that the regions along the edges
of the hemisphere being portrayed are projected very far out on the
map with great distortion in the distances, angles, and areas in-
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Figure 30. Gnomonic map of the Western Hemisphere

volved. For this reason the map in figure 3o cannot show the entire
hemisphere.

Projection and section are used in a different way in a second
method of map-making known as stereographic polar projection.
Suppose an eye is located on the equator in the middle of the Fastern
Hemisphere and looks at points in the Western Hemisphere (fig. 31).
Let a plane cut through the Earth between the two hemispheres.
A section of the lines of sight made by the plane gives us a stereo-
graphic map of the Western Hemisphere (fig. g2).

The method of stereographic projection is useful because it pre-
serves angles. That is, if two curves meet at an angle C on the sphere,
the images of these curves on the map will meet at an angle C” which
equals angle C. For example, the circles of latitude cross the merid-
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Figure 2. Stereographic map of the Western Hemisphere
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ians at right angles on the sphere. The projections of these curves
meet at right angles on the map. Unfortunately the stereographic
projection does not preserve area. The region near the center of the
map is reduced to about one-fourth of its actual size on the sphere.
Near the edges of the map, however, the areas are almost correct.
The most widely known method of map-making is the Mercator
projection. The principle involved in this method cannot be pre-

Figure 33. The principle of the perspective cylindrical projection

sented in terms of projection and section but it can be described
approximately by a related projection. The latter method, known
as the perspective cylindrical projection, employs a cylinder which
surrounds the Earth and is tangent to it along some great circle. In
figure 33 this circle is the equator. The lines that constitute the
projection emanate from the center of the Earth, point O in figure
33, and extend to the cylinder. Thus the point P on the Earth’s sur-
face is projected onto P’ on the cylinder. The cylinder is now slit
along a vertical line and laid flat. On the flat map the parallels of
latitude appear as horizontal lines and the meridians as vertical lines.
No points on the map correspond to the North and South Poles.
The essential difference between the perspective cylindrical pro-
jection and the Mercator projection is in the spacing of the parallels
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of latitude especially in the extreme northern and southern regions.
Figure g4 illustrates the Mercator projection. The importance of
this scheme is twofold. In the first place, as in the case of stereo-
graphic projection, it preserves angles. Second, in steering a ship it
is convenient to follow a course with constant compass bearings; this
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Figure 34. Mercator projection of the Western Hemisphere

means a course which crosses the successive meridians on the sphere
at the same angle. Such a course is known as a rhumb line or loxo-
dromic curve. This course appears as a straight line on a map made
according to the Mercator projection. Hence it is especially easy to
lay out a ship’s course and follow it on such a map.

A great-circle route, it should be noticed, does not imply constant
compass bearing except when the great circle is the equator or a
meridian of longitude. Hence on a Mercator map the great-circle
route appears as a curve. It is the practice in navigation to approxi-
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mate this curve by several short rhumb lines, thus permitting the
ship to keep constant compass bearing along cach rhumb and at the
same time to take some advantage of the shortest distance afforded
by the great-circle route.

The Mercator method of map projection is so common that most
people hardly realize the distortion it introduces. Greenland ap-
pears almost as large as South America though actually it is one-
ninth as large. Canada appears twice as large as the United States;
it is one and one-sixth as large. Despite such distortions the map is
so useful in navigation for the reason given above that it is the one
most widely used.

These brief descriptions of the geometrical principles underlying
several methods of map-making do not exhaust the variety of meth-
ods nor do they give any indication of the mathematics that must
be used to interpret measurements made on the map in terms of
what is actually the case on the sphere. It should be clear, however,
that mathematics is essential to map-making and, in particular, that
projection and section are as extensively employed as in the study
of perspective. Also, just as the use of projection and section in per-
spective gave rise to mathematical questions, so did it happen in
map-making. In connection with maps it is important for practical
reasons to know the properties common to a region on the sphere
and the corresponding region on the map. For example, the fact
that the sizes of angles are preserved in a particular method of map
projection is very useful. Hence map-making, like perspective, has
been the source of many new mathematical problems.

The ideas discussed in this chapter have centered about the notion
of projection and section. The painters were led to this notion in
their efforts to construct a satisfactory optical system of perspective.
The mathematicians derived from the notion a totally new subject
of investigation—projective geometry. And the map-makers em-
ployed the notion to design new map projections. All three fields,
therefore, are intimately related by one basic mathematical concept.

Projective geometry proper can be applied to some practical prob-
lems; however, it has been cultivated primarily for the intrinsic in-
terest men have found in it, for its beauty, its elegance, the latitude
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it affords to intuition in the discovery of theorems, and the strict
deductive reasoning it demands for the proofs. After being tempo-
rarily neglected in favor of applied mathematics this subject was
actively investigated during the nineteenth century and proved to
be the mother of many new geometries. Perhaps because painting
colored his thoughts, the ‘science born of art’ which Desargues cre-
ated is today one of the most beautiful branches of mathematics.
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A Discourse on Method

As long as algebra and geometry proceeded along separate
paths, their advance was slow and their applications limited.

But when these sciences joined company, they drew from
each other fresh vitality and thenceforward marched on at a
rapid pace toward perfection.

JOSEPH LOUIS LAGRANGE

Applied mathematics in the modern sense of the term was not the
creation of the engineer or the engineering-minded mathematician.
Of the two great thinkers who founded this subject one was a pro-
found philosopher, the other a gamester in the reaim of ideas. The
former devoted himself to critical and profound thinking about the
nature of truth, the existence of God, and the physical structure of
the universe. The latter lived an ordinary life as a lawyer and civil
servant; at night, he indulged himself in mental sprees by creating
and lavishly offering to the world million-dollar theorems. The work
of both men in many fields will be immortal.

The profound philosopher was René Descartes (1596-1650), who
was born to moderately wealthy parents in La Haye, France. At the
age of eight he was sent to be educated at the Jesuit College of
La Fléche where he became interested in mathematics. In his seven-
teenth year, at the conclusion of his study of the usual school sub-
jects, he decided to learn more about himself and the world from
first-hand experience. He began these studies by living a gay life in
Paris after which he retired to a quiet corner of the city for a period
of reflection. This was followed by participation in military cam-
paigns, travel, more life in Paris, more war, more Paris, and finally
by a decision to settle down.

Perhaps because Descartes thought he could attain complete seclu-
sion in Holland he secured a house in Amsterdam. He lived in soli-
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tude, except for the company of his mistress and child, and spent the
major part of the following twenty years in writing. There he penned
his best works and acquired fame almost as soon as his first book
was published. As he continued to write, his audience and he him-
self became more and more impressed with the greatness of his work.
Profound thoughts set forth in literary classics which revealed the
clarity, precision, and effectiveness of the French language made
both Descartes and philosophy popular.

After twenty years of retirement he was persuaded to tutor Queen
Christine of Sweden, and so he moved to Stockholm. The queen
preferred to begin her day at five in the morning by studying in an
ice-cold library and Descartes was obliged to meet her at that hour.
These demands, however, were too much for frail René. His flesh
was weak and his spirit unwilling. He caught cold and died in the
year 1650.

When Descartes was still in school at La Fléche he began to won-
der how it was that man professed to know so many truths. It was
partly because he had a critical mind and partly because he lived at
a time when the world outlook that had dominated Europe for a
thousand years was being vigorously challenged, that Descartes could
not be satisfied with the tenets so forcibly and so dogmatically pro-
nounced by his teachers and by leaders of sects other than his own.
He felt all the more justified in his doubts when he realized that he
was in one of the most celebrated schools of Europe and that he was
not an inferior student. At the end of his course of study he con-
cluded that there was no sure body of knowledge anywhere. All his
education had advanced him only to the point of discovering man’s
ignorance.

To be sure, he did recognize some values in the usual type of
studies. He agreed that, ‘Eloquence has incomparable force and
beauty; that Poesy has its ravishing graces and delights’; however,
he judged these to be gifts of nature rather than fruits of study. He
revered Theology because it pointed out the path to heaven and he,
too, aspired to heaven but ‘being given assuredly to understand that
the way is not Iess open to the most ignorant than to the most
learned, and that the revealed truths which lead to heaven are above
our comprehension,” he did not presume to subject them to the im-
potence of his reason. Philosophy, he granted, ‘affords the means of
discoursing with an appearance of truth on all matters, and com-
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mands the admiration of the more simple.” It had produced nothing,
however, which was beyond dispute or above all doubt, though it
had been cultivated for ages by the most distinguished men. He,
therefore, did not presume that his success with traditional philoso-
phy would be any greater. ‘Jurisprudence, Medicine, and the other
Sciences, secure for their cultivators honors and riches. . .” Never-
theless, inasmuch as they borrow their principles from Philosophy,
he judged that no solid superstructures could be teared on founda-
tions so infirm and he was, thank Heaven, not compelled to make
merchandise of Science for the betterment of his fortune. ‘As for
Logic, its syllogisms and the majority of its other precepts are of avail
rather in the communication of what we already know, or . . . even
in speaking without judgment of things of which we are ignorant,
than in the investigation of the unknown. . ” Numerous ‘highly
useful precepts and exhortations to virtue are contained in treatises
on Morals’; but the disquisitions of the ancient moralists were tower-
ing and magnificent palaces with no better foundation than sand and
mud. In all these fields, real or verifiable truth was noticeable by its
absence.

During his years of soldiering, traveling, and living in Paris he
pondered the question of how one can obtain truths. Gradually a
program for securing them became clear to him. He began by dis-
carding all the opinions, prejudices, and so-called knowledge that
he had thus far acquired. In addition, he rejected all knowledge
based on authority and divested himself of all preconceived notions.

To reject falsity, however, did not in itself produce truth. The
problem he then set for himself was to find the method of establish-
ing new truths. The answer, he said, came to him in a dream while
he was on one of his military campaigns.

The ‘long chains of simple and easy reasonings by means of which
geometers are accustomed to reach the conclusions of their most
difficult demonstrations’ led him to believe that ‘all things to the
knowledge of which man is competent are mutually connected in
the same way. . .” He decided, then, that a sound body of philosophy
could be deduced only by the methods of the geometers, for only
they had been able to reason clearly and unimpeachably and to
arrive at indubitable truths. Having concluded that mathematics ‘is
a more powerful instrument of knowledge than any other that has
been bequeathed to us by human agency,’” he sought to distill from
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a study of the subject some general principles that would provide
the method of obtaining exact knowledge in all fields, or, as he called
it, a ‘universal mathematics.” That is, he proposed to generalize and
extend the methods used by mathematicians in order to make them
applicable to all investigations. In essence, the method would be an
axiomatic, deductive construction for all thought. The conclusions
would be theorems derived from the axioms.

Guided by the methods of the geometers Descartes carefully for-
mulated the rules that would direct him in his search for truth. He
decided, first, that he would accept nothing as true which was not so
clear and distinct to his mind that-all doubt was excluded. Thus, he
rejected sense data and, accordingly, all qualities of objects, such as
taste and color, which might be the individual reactions of the per-
ceiver rather than the intrinsic characteristics of the objects them-
selves. The second principle of his method was to divide large prob-
lems into smaller ones. The third one stated that he would proceed
from the simple to the complex; and fourth, he would enumerate
and review the steps of his deductive reasoning so thoroughly that
nothing would be inadvertently omitted. These principles are the
core of his method.

He had, however, to find the simple, clear, and distinct truths
that would play the same part in his philosophy that axioms play in
mathematics proper. The results of his search are famous. From the
one reliable source that his doubts left unscathed—his consciousness
of self—he extracted the building blocks of his philosophy: (a) I
think, therefore I am; (b) each phenomenon must have a cause;
(c) an effect cannot be greater than the cause; and (d) the ideas of
perfection, space, time, and motion are innate to the mind.

Since man doubts so much and knows so little he is not a perfect
being. Yet, according to axiom (d), his mind does possess the idea
of perfection and, in particular, of an omniscient, omnipotent, eter-
nal, and perfect being. How do these ideas come about? In view of
axiom (c) the idea of a perfect being could not be derived from or
created by the imperfect mind of man. Hence it could be obtained
only from the existence of a perfect being, who is God. Therefore
God exists.

A perfect God would not deceive us and so our intuition can be
trusted to furnish some truths. Hence the axioms of mathematics,
for example, our clearest intuitions, must be truths. The theorems
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of mathematics, however, do not possess the simplicity and obvious-
ness of the axioms. How can we be sure of their truth? Man does
reason in a manner he believes to be infallible, but what guarantee
has he that the methods of reasoning necessarily lead to truths?
Again falling back on a God who would not deceive man, Descartes
argued that the conclusions, too, must be truths and therefore must
be correct assertions about the real world. From such foundations
Descartes proceeded to build his philosophy of man and the universe.

His story of his search for method and of the application of the
method to problems of philosophy was presented in his famous Dis-
course on Method. The supremacy of human reason, the invariabil-
ity of natural laws, the doctrine of extension and motion as the
essence of physical objects, the distinction between body and mind,
and the distinction between qualities that are real and inherent in
objects and qualities that are only apparently present but are ac-
tually due to the reaction of the mind to sense data are elaborated in
these writings and have been influential in shaping modern thought.

It is not our purpose here to elaborate on the philosophical paths
that Descartes followed, however worthy of study they are in their
own right. What is relevant to our story is that the truths of mathe-
matics and mathematical method served as a beacon light to a great
thinker groping his way through the intellectual storms of the seven-
teenth century. His philosophy may indeed be characterized as
mathematized philosophy. It is far less mystical, metaphysical, and
theological, and far more rational than those of his medieval and
Renaissance predecessors. He examined carefully the meaning and
reasoning involved in all of his steps; he taught men to look within
themselves for truths; and he cast off pupilage to antiquity and
authority. With Descartes theology and philosophy parted company.

The method Descartes abstracted from mathematics and general-
ized he then reapplied to mathematics; with it he succeeded in creat-
ing a brand new way of representing and analyzing curves. This
creation, now known as co-ordinate geometry, is the basis of all
modern applied mathematics. It will be valuable as far into the
future as man can see whereas Descartes’ philosophy, like most phi-
losophies, is tied to a particular time. Before we examine Descartes’
thinking in mathematics proper we must pause to acknowledge the
equally worthy and independent efforts of his countryman and co-
discoverer of co-ordinate geometry, Pierre Fermat.
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In contrast to Descartes’ adventurous, romantic, and purposive
life Fermat’s was dull, highly conventional, and matter of fact. He
was born in 1601 into the family of a French leather merchant. After
studying law at Toulouse he spent most of his life as a civil servant.
Fermat’s home life, too, was quite ordinary. He was married at the
age of thirty and was devoted to his wife and five children. He lived
quietly, ignored problems involving God, man, and the nature of
the universe, and relaxed at night with his favorite pastime, mathe-
matics. Whereas to Descartes mathematics served to solve philosoph-
ical and scientific problems and to master nature, to Fermat the
subject offered beauty, harmony, and the pleasures of contemplation.
Despite the brief amount of time he was able to spend on the sub-
ject and the pleasure-seeking attitude with which he approached it,
he established himself after sixty-four years of life as one of the
truly great mathematicians of all times.

His contributions to the calculus were first rate though somewhat
overshadowed by those of Newton and Leibniz. He shared with
Pascal the honor of creating the mathematical theory of probability,
and shared with Descartes the creation of co-ordinate geometry. He
founded single-handed one major branch of mathematics, the theory
of numbers. In all these fields this ‘amateur’ produced brilliant re-
sults and left his impress. Though not concerned with a universal
method in philosophy Fermat did seek a general method of working
with curves. And here his thoughts joined company with those of
Descartes.

We must digress briefly to understand why it was that the great
mathematicians of the time were so much concerned with the study
of curves. In the early part of the seventeenth century, mathematics
was still essentially a body of geometry with algebraic appendages,
and the heart of this body was Euclid’s contribution. Euclidean
geometry confines itself to figures formed by straight lines and circles
but by the seventeenth century the advances of science and tech-
nology had produced a need to work with many new configurations.
Ellipses, parabolas, and hyperbolas became important because they
described the paths of the planets and comets. Parabolas were, also,
the paths of projectiles such as cannon balls. The motion of the
moon was intensively studied to help locate ships at sea. The curved
path of light rays through the atmosphere was of interest to astrono-
mers and artists, while the curvature of lenses was studied for use in
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spectacles, the telescope, and microscope, and for an understanding
of the operation of the human eye. Actually, both Descartes and
Fermat were very much interested in optics. Descartes published an
essay on the passage of light through lenses, and Fermat contributed
several fundamental laws, one of which will concern us in a later
chapter. Unfortunately, Euclid offered no information on the curves
involved in these and numerous other practical problems, and ex-
tant Greek works on the conic sections were inadequate.

Not only did the Greek works fail to supply the desired knowl-
edge about important curves but they also failed to supply broadly
applicable mathematical methods for obtaining that knowledge.
Every proof in Euclid called for some new, often ingenious, ap-
proach. The Greek mathematicians with ample time at their dis-
posal and no concern for immediate application apparently did not
miss this lack of a general procedure. But the multifarious practical
and scientific needs of the seventeenth century put pressure on the
mathematicians to solve difficult problems in short order.

At this juncture Descartes and Fermat stepped into the picture.
They were definitely dissatisfied with the limited methods used in
Euclidean geometry. Descartes explicitly criticized the geometry of
the ancients as being too abstract and so much tied to figures ‘that it
can exercise the understanding only on condition of greatly fatiguing
the imagination.” Algebra, too, was criticized because it was so com-
pletely subject to rules and formulas ‘that there results an art full of
confusion and obscurity calculated to embarrass, instead of a science
fitted to cultivate the mind.” On the other hand, both men recog-
nized that geometry supplied information and truth about the real
world. They also appreciated the fact that algebra could be employed
to reason about abstract and unknown quantities; and it could be
used to mechanize the reasoning process and minimize the effort
needed to solve problems. It is potentially a universal science of
method. Descartes and Fermat therefore proposed to borrow all that
was best in geometry and algebra and correct the defects of one with
the help of the other.

We can best understand what these men accomplished in the task
they set for themselves by following the reasoning of Descartes,
though our account may differ from his in details. We saw that in
his general study of method he had decided to solve all problems by
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proceeding from the simple to the complex. Now the simplest figure
in geometry is the straight line. He therefore sought to approach the
study of curves through straight lines and he found the way to do
this.

Let there be given, said Descartes, any curve such as the one shown
in figure g5. This curve can be thought of as being generated by a
point P which lies on a vertical line PQ. As the line moves to the
right P itself moves up or down in accordance with the shape of the
curve. Thus any curve can be studied by studying the motion of a
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Figure g5. A curve generated by the motion of a straight-line segment of varying
length

point P which moves up or down on a straight line as the line itself
moves parallel to its former positions. So far, so good. But how can
one characterize any curve by the behavior of P?

For this purpose Descartes used algebra, for he knew that algebraic
language is a simple device to aid the memory and that it embraces
many facts in a short space. As the vertical line moves to the right
(fig. 35) its distance from a fixed position at O, say, can be used to
denote its position. This distance is denoted by x. The position of P
on the moving line can be specified by stating its distance above the
fixed horizontal line OQ. This distance can be denoted by y. Thus
for each position of P there will be a value of x and a value of y.
For the same x two different curves will differ in the y-values. Hence
what characterizes a curve is some relation between x and y that
holds for points P on this curve and that would be different for a
different curve.

Let us see how this idea applies to a simple curve such as a straight
line passing through the point O and making an angle of 45° with
the horizontal (fig. 36). If the moving line QP moves any distance x
to the right, the point P has to rise a distance y equal to x to reach
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the straight line, for Euclidean geometry tells us that OQP is an
isosceles right triangle and that OQ must therefore equal QP. Hence

(1 y=x

is the relation that characterizes the points of the straight line con-
cerned. Thus the point P for which the distance OQ is § and the
distance PQ is g is a point on the line because its x-value of § and its
y-value of g satisfy the equation y = x.
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Figure 86. A straight line making a 45° angle with the horizontal

In order to include points such as P’ on the straight line and at
the same time distinguish P’ from P, it is agreed to use negative
numbers to represent the distances moved by PQ to the left of O
and distances QP below the horizontal line OQ. Thus the x- and
y-values of P’ are both negative and equal, and it is stll true that
¥ = x, On the other hand, for the point R which is not on the line
P’OP, the y-value or the distance QR is not equal to x; therefore for
points off the line it is not true that y = x.

We may systematize the thoughts contained in the discussion
above as follows. To discuss the equation of a curve we introduce
a horizontal line which will be called the X-axis (fig. g%), a point O
on this line which is called the origin, and a vertical line through O
which is called the Y-axis. If P is any point on a curve, there are two
numbers that describe its position. The first is the distance from
O to the foot, Q, of the perpendicular from P to the X-axis. This
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number is called the x-value or abscissa of P. The second number is
the distance PQ and this number is called the y-value or ordinate
of P. The two numbers are called the co-ordinates of P and are gen-
erally written thus: (x, y). It is agreed that if P is to the right of the
Y-axis, its x-value is taken to be positive, and if to the left, negative.
In like manner, if P is above the X-axis its y-value is taken to be
positive, whereas if it is below, its y-value is negative. The curve

Y = axis
P
y
) " ) X = axis

Figure g7. The rectangular co-ordinate system

itself is then described algebraically by stating some equation which
holds for the x- and y-values of points on that curve and only for
those points.

Just to illustrate Descartes’ idea once more we shall apply it to
the circle in figure 38. Suppose the circle has radius 5. Let P be any
point on the curve and let x and y be its co-ordinates. Then the
Pythagorean theorem of Euclidean geometry, which says that the
sum of the squares of the arms of a right triangle equals the square
of the hypotenuse, tells us that

(2) x? 4 92 = 25,

This relation holds for each point P on the circle; that is, the x and y
of each point are such that x* 4 y2 = 25. For example, the point
which has the co-ordinates (3, 4) lies on the circle because 3% + 42 =

25. However, (3, 2) are not the co-ordinates of a point on the circle
because 3% 4 22 does not equal 25. We say that equation (2) is satis-
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fied by the co-ordinates of a point if the substitution of its abscissa
for x and its ordinate for y makes the left side equal the right side.
The co-ordinates of a point on the circle satisfy the equation; the
co-ordinates of a point not on the circle do not satisfy the equation.

We have thus far illustrated how a curve can be represented by
an equation that characterizes this curve in a unique way. Descartes’
idea also permits us to reverse the process above, Suppose we start
with an equation, such as

(8) y = x%
Y
P
5
y
) % X

Figure 38. A circle placed on a rectangular co-ordinate system

What curve may be associated with this equation? Let us think once
more in terms of the behavior of the point P on the moving line
PQ. As PQ moves to the right of O, the distance OQ, which is the
x-value of P, is positive. Now equation (3) says that the y-value of P,
or the distance PQ, must always equal x?. When x is positive, so is x2
Hence P must lie above the X-axis. Moreover, when x is small so is
x2%, whereas when x gets larger, x? increases very rapidly. Therefore
we know, at least roughly, what the curve looks like for positive x
(fig. 3g). Now as PQ moves to the left of O, the x-value of P is nega-
tive. But x? is still positive because the square of a negative number
is positive. Hence P will be above the X-axis. Moreover, the value of
x? is the same for a given negative value of x as it is for the corre-
sponding positive value of x. For example, x2 is ¢ when x = —3 as
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well as when x = +3. Hence the point P will move in the same way
to the left of the Y-axis as it does to the right. The complete curve is
shown in figure gg, wherein it is understood that the curve continues
indefinitely upward to the right and to the left. Our analysis of the
equation y = x* shows that the curve is symmetric about the Y-axis.
It could be proved that the curve 1s a parabola.

If we wished to obtain a more accurate picture of the curve, we
could choose values of x, substitute them in the equation y = x2% and

Y

Figure 39. The curve of y = x2

calculate the corresponding y-values. Thus when x = 1, y = 1; when
% =2, 9=4; when x = 2%, y = 2%; and so forth. Since each of
these pairs of co-ordinates, for example (2, 4), represents a point on
the curve we could plot these points and join them by a smooth
curve. The more co-ordinates we calculate, the more points can be
plotted and the more accurately the curve can be drawn.

The heart of Descartes’ and Fermat’s idea is now before us. To
each curve there belongs an equation that uniquely describes the
points of that curve and no other points. Conversely, each equation
involving x and y can be pictured as a curve by interpreting x and y
as co-ordinates of points. Formally stated, the equation of any curve
is an algebraic equality which is satisfied by the co-ordinates of all
points on the curve but not by the co-ordinates of any other point.
The association of equation and curve, then, is the brand new
thought. By combining the best of algebra and the best of geometry
Descartes and Fermat had a new and immensely valuable method for
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studying geometric figures. This is the essence of the idea Descartes
embodied in an appendix to his Discourse on Method as proof of
what his general method in philosophy could accomplish when ap-
plied to mathematics. And indeed, in two or three months, Descartes
succeeded in solving many difficult problems by using his new
method.

Beyond the analysis of properties of individual curves, the asso-
ciation of equation and curve makes possible a host of scientific ap-

Figure go. The focusing property of a parabola

plications of mathematics. In this connection we shall examine an
application of the parabola wherein the equation of the curve has
proved invaluable. A parabola is always symmetric with respect to
one line which is called its axis. In figure gg this axis of symmetry is
the Y-axis. In figure 4o, the axis is the horizontal line shown. On
this axis there is a point F, called the focus, such that if P is any
point on the parabola, the line PF and the line through P parallel
to the axis, PD in figure 40, make equal angles with the tangent PQ
at P. That is, angle 1 equals angle 2.

Now suppose that the parabola is a cross-section of a reflecting
surface and that a small source of light is placed at F. The light
rays emanating from F will strike the parabola and, very fortunately
for us, will be reflected along lines parallel to the axis. Thus a typi-
cal light ray originating at F will take the path FPD. The effect is
that all the light will be concentrated in the direction of the axis
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and will produce a strong beam of light. In practical applications of
this principle we use a surface that is obtained by rotating the para-
bola about its axis; a familiar example is furnished by an automobile
headlight (see also fig. 44).

The same property of the parabola is used in reverse. If the parab-
ola is held so that its axis points to a distant star, the light rays will
come in practically parallel to the axis of the parabola, will strike
the parabola, and will be reflected to the point F. Hence there will
be a great concentration of light at F enabling scientists to view the
distant star more clearly. The parabola is therefore employed in
some types of telescopes. If the sun were being viewed instead of a
star, the light rays converging at F would produce great heat and
set on fire an inflammable object placed at that spot. This effect
accounts for the use of the word focus, which means ‘a hearth’ or
‘burning-place’ in Latin.

Since practical applications of mathematics are not our primary
concern in this book we shall merely mention in passing that all the
conic sections possess properties similar to the one just described for
the parabola. Therefore, these curves are effectively employed in
lenses, telescopes, microscopes, X-ray machines, auditoriums, radio
antennas, searchlights, and hundreds of other major devices. When
Kepler introduced the conic sections in astronomy they became basic
in all astronomical calculations including those of eclipses and the
paths of comets. The conic sections are used also in the design of
cables and roadways for bridges. In all these applications the equa-
tions of these curves have rendered possible, or at the very least expe-
dited, calculations. Where the methods of Euclidean geometry would
have required elaborate and complicated constructions and would
have furnished lengths which could be measured only approxi-
mately, Descartes’ algebraic equation is a much simpler tool and
furnishes answers to as many decimal places as individual cases re-
quire. Co-ordinate geometry may not have lived up to Descartes’
expectation that it would solve all geometric problems, but it solves
many more than he could have envisioned in the seventeenth cen-
tury.

Really important ideas are usually germinal in that they, in turu,
suggest unsuspected notions and relationships. Descartes’ association
of equation and curve automatically uncovered a new world of
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curves. For each algebraic equation in x and y a curve exists that is
described by that equation. Since the number and variety of equa-
tions that can be written down is unlimited, so is the range of curves.
And these numerous curves, discovered only through their equa-
tions, in turn have proved useful in new and manifold applications.

The association of equation and curve did more than open up
a new world of curves; it held forth prospects of new spaces. The
extension of the idea to three-dimensional space suggested itself im-
mediately. Beyond that was the provocative challenge to extend the
idea to still higher dimensions. We must look into these more recent
ramifications of co-ordinate geometry, for these extensions are at
the basis of the most complicated and sophisticated of modern scien-
tific developments, including the theory of relativity.

We shall consider first the extension of co-ordinate geometry to
three-dimensional space. Earlier we saw that the position of a point
in the plane can be described by a pair of numbers or co-ordinates.
It will be apparent in a moment that the position of a point in space
can be specified by a triplet of numbers. Let A be any plane, as the
plane of this page, and let it be held horizontally. Suppose that in
this plane the direction in which positive x-values are measured is
indicated by OX (fig. 41) and the direction in which positive y-values
are measured is indicated by OY.

Now, every point P in space is above or below the plane 4 a dis-
tance we shall represent by z; z is positive for points above 4 and
negative for points below it. For example, if P is 4 units above 4
its z-value is 4. The position of P in space is completely described by
noticing first that it is directly above the point R in the horizontal
plane. R has x- and y-co-ordinates because it is in the plane A. Sup-
pose these co-ordinates are (3, 2). Then the numbers g, 2, and 4
completely determine the position of P, and no other point in space
answers to this description. We therefore call 3, 2, and 4 the co-
ordinates of P and write them in the form (3, 2, 4). To a point in
the plane 4, such as R, a third co-ordinate, o, is assigned so that the
co-ordinates of R in the three-dimensional co-ordinate system we are
now erecting are (3, 2, o). The point P’ with co-ordinates (3, 2, —4)
is also shown in figure 41. The intersection O of the three axes OX,
0Y, and OZ is called the origin of the three-dimensional system and
has the co-ordinates (o, <. <).

By means of our three-dimensional co-ordinate system it is pos-
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sible to relate algebraic equations and geometrical figures in space.
To illustrate such a relation let us consider the sphere. By definition
the sphere is the set of all points in space at a given distance from

Z

TR

-4
p'
Figure 41. The three-dimensional rectangular co-ordinate system

a fixed point called the center of the sphere. Suppose that all points
of our sphere are j units from the center and that the sphere is
located so that its center is at the origin of a three-dimensional co-

Z

Y

Figure 42. A sphere placed on a three-dimensional rectangular co-ordinate system

ordinate system (fig. 42). Let (x, y, z) be the co-ordinates of any point
P on the sphere. Then x and y are the arms of a right triangle (lying
in the horizontal plane) whose hypotenuse is OR. By the Pythago-
rean theorem
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OR and z, however, are the arms of the right triangle ORP, whose
hypotenuse is OP or 5 units. Then

OR? + 22 = 25.

But OR? has a value from the preceding equation. If we substitute
this value we obtain the equation

%2 + 9% 4 22 = 25.

This is the equation of a sphere in the sense that the left side
equals the right side when and only when the co-ordinates of a point
on the sphere are substituted for x, 9, and z. The point (o, 3, 4), for
example, satisfies the equation because

02+32+42:25

and therefore lies on the sphere. The similarity of the equation of
the sphere to x* + 92 = 25, the equation of the circle, should be
noted for later consideration.

The case of the sphere illustrates an important new fact. An equa-
tion in x, y, and z represents a surface, and each surface is repre-
sented by such an equation. Without presenting details here we shall
mention some equations and their surfaces because it may help the
reader to follow our discussion of four-dimensional geometry.

An equation of the form

3% + 4y + 52 = 6,

(the numbers are arbitrary) represents the set of points on a plane
(fig. 43)- The similarity of this equation to the equation of a straight
line, which in a two-dimensional co-ordinate system is exemplified
by 3x 4 4y = 6, is obvious.

An equation of the form

x2+y2=z

represents a paraboloid (fig. 44). The paraboloid shown here has
roughly the shape of a mixing bowl or an automobile headlight.
This equation is very much like the equation y = x2 which repre-
sents a parabola.

The sphere, plane, and paraboloid are the analogues in three-
dimensional space of the circle, line, and parabola, and this relation
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reveals itself when their equations are compared. If we could take
the time to examine the equations of other surfaces, we would find

Figure 43. The plane corresponding to gx + 4y + 52 =6

that they are the natural extensions of the equations of curves that
have similar geometrical properties.

Z

Figure 44. The paraboloidal surface corresponding to x2 4+ y2 =z

Language conveys ideas; a rich language may also suggest new
ideas. At least this is the case in mathematics where the language
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often proves cleverer than the people who invent it. The algebraic
language of co-ordinate geometry proved to have unexpected power,
for it dispenses with the need for geometrical thinking. Consider the
equation x% +4- 9% = 25, which we know represents a circle. Where is
the rounded figure, the path that knows no end, the beauty of shape?
All in the formula. Algebra has replaced geometry; the mind has
replaced the ‘eye.” We can find all the properties of the geometrical
circle in algebraic properties of this equation. This fact suggested to
the mathematicians that through the algebraic representation of ge-
ometric figures they could explore a concept advanced even before
the time of Descartes and Fermat but theretofore unapproachable—
namely, four-dimensional geometry.

What is a four-dimensional geometry? Approached pictorially the
concept has no meaning. But we can think about four mutually per-
pendicular lines, that is, four lines each perpendicular to the other
three. A point in four-dimensional space may also be regarded as
represented by four numbers or co-ordinates, these numbers being
the distances we must proceed along the four axes to reach that point.
Thus the co-ordinates of an arbitrary point can be written as (x, y,
z, w). It is possible, next, to think about particular geometrical fig-
ures in four-dimensional space. The most convenient way to intro-
duce and study these figures is through the language of co-ordinate
geometry. For example, we can set up an equation such as

X4y+z—w=5.

This equation is satisfied by many sets of x, y, z, and w values. Thus
the values x = 1,y = 6, z = 2, and w = 4 satisfy this equation as do
X =1,y =5,z =3, w = 4. Fach set of values satisfying the equation
belongs to a point and the geometrical figure represented by the
equation is the collection of points each of whose co-ordinates satisfy
the equation. Because the equation is the extension to four letters of
the equations of the straight line and plane, we call this figure a
hyperplane. Similarly, we can speak of the figure belonging to the
equation

x2 4 92 4 22 + w? = 25

as a hypersphere because this equation is an extension to four letters
of the equations of circle and sphere. The equations in four letters
are the algebraic description of figures in four-dimensional spacn.
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The figures of four-dimensional geometry exist in the same sense
as do the figures in two and three dimensions. The hyperplane is as
‘real’ as the straight line and plane, and the hypersphere as ‘real’ as
the circle and sphere. The same applies to all other objects of higher
dimensional geometry, The difficulty most people experience in ac-
cepting a four-dimensional geometry and the corresponding equa-
tions is due to the fact that they confuse mental constructions and
visualization. All of geometry, including two- and three-dimensional
Euclidean geometry, deals, as Plato emphasized, with ideas that exist
in the mind only. Fortunately we can visualize or picture the two-
and three-dimensional ideas by means of drawings on paper, and
these drawings help us to remember and to organize our thoughts.
But the pictures are not the subject matter of geometry and we are
not permitted to reason from them. It is true that most people, in-
cluding mathematicians, lean upon these pictures as a crutch and
find themselves unable to walk when the crutch is removed. For a
tour of the domains of higher dimensional geometry, however, the
crutch is not available. No one, not even the most gifted mathema-
tician, can visualize four-dimensional structures; he must rely on his
mind alone. The structures themselves are then treated by means of
their equations.

As a matter of fact, it is possible to visualize sections of figures in
four-dimensional space. The meaning of this statement can be ex-
plained by reference to a three-dimensional situation. Suppose we
wanted to study the ellipsoid (for example, the surface of a football)
in detail. To circumvent the difficulty in visualizing the whole figure,
a difficulty not too great in this case, a favorite mathematical device
is to take plane sections of the ellipsoid and study these. From these
sections—ellipses such as A4 and B in figure 45—we can obtain knowl-
edge of the entire ellipsoid. Thus the problem of studying a figure
in three-dimensional space is reduced to that of studying figures in
two-dimensional space.

In a similar manner, we can examine two- and three-dimensional
sections of four-dimensional geometrical figures and deduce knowl-
edge about them from the sections. ‘But,” the reader might object,
‘we know what the plane sections of the ellipsoid are because we can
visualize the whole figure. How can we do that for our four-dimen-
sional world?” The answer is, by means of the algebraic equations.
We find the equation of the section first and obtain its shape with
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our knowledge of ordinary, two-dimensional and three-dimensional
co-ordinate geometry.

In still another way are we able to visualize figures of a four-dimen-
sional space. To study an elliptical section of the ellipsoid we car
confine ourselves to the plane in which the ellipse lies, that is, we
need to consider a two-dimensional world only. Now let us consider
a curve of a four-dimensional world. If this curve happens to lie in a
plane it can be completely visualized despite the fact that it is part
of a four-dimensional world.

Y
Figure 45. Two-dimensional sections of the ellipsoid

If we can study four-dimensional figures in terms of two- and three-
dimensional sections, why admit the four-dimensional world in the
first place? The answer is that the proper relationships of these var-
ious sections to each other can exist only in such a world, just as the
proper relationship of sections 4 and B of the ellipsoid in figure 45
can exist only in three-dimensional space.

The notion of a four-dimensional geometry is actually a very help-
ful one in studying physical phenomena. There is a point of view
from which the physical world can and should be regarded as four-
dimensional. Any event occurs in a certain place and at a certain
time. To describe this event as distinguished from other events we
should give the position and time of its occurrence. Its position in
space can be specified by three numbers, that is, its co-ordinates in a
three-dimensional co-ordinate system; the time of occurrence can be
specified by a fourth number. The four numbers %, v, z, and ¢, and
no fewer, thus serve to specify the event unmistakably. The four
numbers are the co-ordinates of a point in a four-dimensional space-
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time world. Hence it is natural to think of the world of events as a
four-dimensional world and to study physical events in that light.

Let us consider, as a specific example, the motion of a planet. To
locate a planet properly we must specify not only the position of the
planet but the time when the planet occupies that position. Hence
four numbers are actually required to describe the location of the
planet, and these four numbers may be regarded as a point in a four-
dimensional geometry. The successive locations of the planet may
also be described as points of a four-dimensional world and the entire
motion of the planet in space-time is described by a hypercurve. We
cannot visualize or draw such a curve but we can represent it by an
equation or, more accurately, by a set of equations, in four letters.
If the equations are correctly chosen then they embody a complete
description of the motion just as x2 4 92 = 25 is a complete descrip-
tion of the circle. And just as we can deduce facts about the circle by
studying its equation so we can deduce facts about the motion of a
planet by studying the representative equations.

Perhaps we should take this occasion to point out that a great deal
of nonsense has been written about what it would be like if we lived
in a world of four spatial dimensions. Many writers have declared
that in a world of four spatial dimensions people could eat an egg
without breaking the shell, or leave a room without passing through
the walls, floor, or ceiling. These writers are reasoning by analogy
with comparable situations in lower dimensions. To pass from a
point A inside a square to a point B outside (fig. 46) and remain in
the plane of the paper, the boundary C must be crossed. But we may
avoid C if we are allowed to employ a third dimension and go out of
the plane of the paper. Similarly, to pass from a point 4 inside a cube
to a point B outside (fig. 47), the surface of the cube must be crossed
—as long as we are confined to three dimensions. However, and here
the reasoning by analogy enters, if we could employ a fourth dimen-
sion the surface of the cube could be avoided.

Now such speculations would be harmless if they did not give the
impression that mathematicians actually believe in the real existence
of a world of four spatial dimensions and hope some day to train
our visual apparatus to perceive this world. No such belief is held
nor is such a project contemplated.

The notions of dimension and of higher dimensional geometry
are fascinating branches of mathematics. But these topics take us far
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beyond the time and work of Descartes and Fermat. It is their work
and the lesson to be derived from it that concern us in this chapter.
What then is that lesson? First, mathematics was an inspiration and
a guiding light in Descartes’ philosophical thinking. Second, a phil-
osophical interest in method and an intellectual delight in mathemat-
ical activity produced the co-ordinate geometry on which practically
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Figure 46 Figure 47

all applications of mathematics to the physical world depend. The
line of development from Descartes through Newton to Einstein is
as straight as any mathematical idealization could conceive.

Through Descartes’ work the importance of mathematics was con-
siderably increased, for he was the first influential thinker to dem-
onstrate to the world the nature and value of mathematical method
in man’s search for truth. He offered a plan of attack on problems
to a world lost in the morass of confusion that characterizes the end
of an era. Just how much the world profited by Descartes’ proselytiz-
ing for the cause of mathematical method will be apparent within
the space of a few chapters.
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The Quantitative Approach to Nature

So that we may say the door is now opened, for the first
time, to a new method fraught with numerous and wonder-
ful results which in future years will command the attention
of other minds. GALILEO

One day a young man who was a student at the University of Pisa
visited the cathedral of that famous town. The services must have
been boring for instead of listening attentively he watched the swing-
ing of a great hanging lamp. He soon noticed that when the lamp
swung through a wide arc the time it took to pérform one swing
seemed to be the same as when it swung through a narrow arc. He
did not use his pocketwatch to check this observation for the simple
reason that such a timepiece had not as yet been invented; but he
did think to use his pulse beat. The observation turned out to be
correct, and a mere youth had discovered a scientific law governing
all pendulum motion: the time required by a pendulum to perform
a swing is independent of the amplitude of the swing. Not long after-
ward this law was used to design the serviceable clock which the
young man lacked. More important, the discovery suggested a new
concept of scientific activity which defines modern science and at the
same time endows it with its ‘magical’ power. This is the concept we
intend to examine.

The young man who daydreamed in church, Galileo Galilei, son
of a musician, was born in Florence in 1564, the year of Shakespeare’s
birth. At the age of seventeen he entered the University of Pisa to
study medicine and, while there, learned mathematics in private les-
sons from a practical engineer. His reading of Euclid and Archimedes
fired a natural genius for mathematics and science and so, with his

father’s consent, he turned his attention to those fields.
182
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The scope of Galileo’s interests and activities was unbelievably
broad even for a great intellect of the Age of Genius. He was always
keenly interested in mechanical devices and was mechanically dex-
terous himself. At home he kept a workshop in which he spent a
great deal of his time. There he produced so many new and ingen-
ious devices that he can be called the father of modern invention.
The telescope, or ‘perplexive glasses’ as Ben Jonson called them,
with which Galileo discovered the moons of both Jupiter and Saturn,
the star composition of the Milky Way, the phases of Venus, and the
mountains and valleys on the moon, was of his own design. These
observations, incidentally, showed that the heavenly bodies possessed
the same properties as did the Farth and therefore constituted addi-
tional weighty evidence for the heliocentric theory. Another of Gali-
leo’s inventions was a pulsilogium, a device that utilized his own
law of pendulum motion to record pulse rates mechanically.

Though his scientific research overshadows his other activities,
Galileo was also a major literary figure, and it is acknowledged that
he wrote the best Italian prose of the seventeenth century. He ex-
perimented with literary forms, criticized and wrote poetry, and lec-
tured for a while on Dante. Even his scientific writings are famous,
not merely because they present his astronomical and physical re-
searches but because they are literary classics as well. Galileo’s in-
terest in the art of writing was supplemented by devotion to paint-
ing and by skillful musicianship, both of which often consoled him
in his years of trouble.

The most artistic and the most fruitful creation of the myriad-
minded Galileo was a grand plan for reading the book of nature.
In essence it offered a totally new concept of scientific goals and of
the role of mathematics in achieving them. Though earlier, less com-
prehensive, and generally abortive efforts of forerunners should be
acknowledged, Galileo explicitly formulated the plan and put it into
effect by establishing a number of fundamental laws. When Galileo
died in 1642, full of fame and years, modern science was already well
started on its successful career, an accomplishment that must be
credited to his almost single-handed efforts. It is Galileo’s plan for
studying and mastering nature that will concern us in this chapter.

Doubtless almost every twentieth-century person is aware that
something revolutionary occurred in the field of science about the
year 1600. Why did the scientific activity that was initiated in the
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seventeenth century prove so effective? Were the contributors such
as Descartes, Galileo, Newton, Huygens, and Leibniz greater in-
tellects than those found in earlier civilizations? Hardly. The pro-
foundly learned Aristotle and the brilliant Archimedes both pos-
sessed intellects as fine as those of any of the seventeenth-century
scientists. Was it because of the increased use of observation, experi-
ment, and induction, methods urged by Roger Bacon and Francis
Bacon? Apparently not. The turn to observation and experimenta-
tion may have been an innovation in the Renaissance but it was a
method of approach at least familiar to Greek scientists. Nor does
the mere use of mathematics in scientific studies explain the amazing
accomplishments of modern science, for though the seventeenth-cen-
tury scientist knew that the goal of his work should be to ferret out
the mathematical relationships behind various phenomena, the search
for such relationships in nature was not new to science. The belief
in the mathematical design of nature had been put to the test even
in Greek times.

The secret of the success of modern science was the selection of a
new goal for scientific activity. This new goal, set by Galileo and
pursued by his successors, is that of obtaining quantitative descrip-
tions of scientific phenomena independently of any physical expla-
nations. The revolutionary character of this new concept of science
will be appreciated more if it is compared with the scientific activity
of preceding ages.

Greek scientists concentrated on explaining why phenomena oc-
cur as they do. Aristotle, for example, spent much time in trying to
explain why bodies thrown up into the air fall to the Earth. The
Greek mathematician and engineer, Heron, used the principle that
nature abhors a vacuum to explain other phenomena. Similarly,
Greek physics accounted for the absence of apparent forces causing
the circular motion of the heavenly bodies by arguing that circular
motion was natural and hence needed no forces to start it or keep it
going. Still other ‘explanations’ hardly seem to penetrate the phe-
nomena they dealt with. For example, according to Plato, the Earth
maintains its fixed position in the center of the universe ‘for a thing
in equilibrium in the middle of any uniform substance will not have
cause to incline more or less in any direction.’

Medieval Europe was also concerned with why things happen, only
the explanations were always in terms of the purpose of a phenom-
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enon. An ‘explanation’ of rain was that it watered man’s crops. The
crops grew to feed man, and man lived to serve God and worship
Him. St. Thomas, following Aristotle, discussed motion from the
standpoint of why it happens and said that it is the act of that which
is in potentiality and seeks to actualize itself. Whether or not these
explanations appear satisfactory to us, they were nevertheless the
answers given to questions asked in earlier scientific activity.

Galileo was the first man to realize that such speculations in regard
to the causes and reasons for events had not advanced scientific
knowledge very far and that they had not given man much power to
predict and control the course of nature. For these reasons he pro-
posed to replace them by a quantitative description of phenomena.

His proposal may be clarified by an example. In the simple situ-
ation in which a ball is dropped from a person’s hand we might spec-
ulate endlessly as to why the ball falls. Galileo advised us to do other-
wise. The distance the ball falls from its starting point increases as
time elapses from the instant it is dropped. In mathematical language
the distance the ball falls and the time that elapses as it falls are
called variables since both change as the ball falls. Let us seek, said
Galileo, some mathematical relation between these variables. The
answer that Galileo sought is written nowadays in that scientific short-
hand known as a formula; for the situation under discussion, this
formula is d = 16¢2. This formula says that the number of feet, d,
which the ball falls in ¢ seconds is 16 times the square of the number
of seconds. For example, in § seconds the ball falls 16 times g2 or 144
feet; in 4 seconds, the ball falls 16 times 42 or 256 feet; and so forth.

It should be noticed, first, that the formula is compact, precise,
and quantitatively complete. For each value of one variable, time in
this case, the corresponding value of the other, distance, may be cal-
culated exactly. This calculation can be performed for millions of
values of the time variable, actually an infinite number of values,
so that the simple formula d = 162 contains an infinite amount of
information.

The formula is a way of representing a relation between variables.
The relationship itself, which may be known to exist on physical
grounds, is called today a function or functional relation. Such rela-
tions hold in practically every sphere. Since the pressure of the atmos-
phere varies with the elevation above the surface of the Earth, there
is a functional relation between the pressure and the altitude. Simi-
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larly, the cost of a manufactured article depends on, or is a function
of, the cost of raw materials, labor costs, and overhead. In this last-
mentioned exaniple four variables are involved, one of which, the
cost of the article, depends on the other three.

It is very important to realize that the mathematical formula is a
description of what occurs and not an explanation of a causal rela-
tionship. The formula d = 16¢* says nothing about why a ball falls
or whether balls have fallen in the past or will continue to fall in
the future. It merely gives quantitative information on kow a ball
falls. And even though such formulas are used to relate variables
which the scientist suspects are causally related, it is nevertheless true
that he does not have to investigate, nor understand, the causal con-
nection in order to treat the situation successfully. It is this fact that
Galileo saw clearly when he emphasized mathematical description
against the less successful qualitative and causal inquiries into nature.

It was Galileo’s decision, then, to seek the mathematical formulas
that describe nature’s behiavior. This thought, like most thoughts of
genius, may leave the reader unimpressed on first contact. There
seems to be no real value in these bare mathematical formulas. They
explain nothing. They simply describe in precise language. Yet such
formulas have proved to be the most valuable knowledge man has
ever acquired about nature. We shall find that the amazing practical
as well as the theoretical accomplishments of modern science have
been achieved mainly through the quantitative, descriptive knowl-
edge that has been amassed and manipulated rather than through
metaphysical, theological, and even mechanical explanations of the
causes of phenomena. The history of modern science is the history
of the gradual elimination of gods and demons and the reduction of
vague notions about light, sound, force, chemical processes, and other
concepts to number and quantitative relationships.

The decision to seek the formulas that describe phenomena leads
in turn to the question: what quantities should be related by for-
mulas? A formula relates the numerical values of varying physical
entities such as pressure and temperature. Hence these entities must
be measurable. The principle Galileo followed next was to measure
what is measurable and to render measurable what is not yet so. His
problem then became that of isolating those aspects of natural phe-
nomena which are basic and capable of measurement.
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In pursuit of this objective he had to break new ground. His pred-
ecessors of the medieval period, following Aristotle, had approached
nature in terms of concepts such as origins, essences, form, quality,
causality, and ends. These categories do not lend themselves to quan-
titization. Instead Galileo proceeded to exploit a philosophy of nature
founded by both himself and Descartes. The latter had already fixed
on matter moving in space and time as the fundamental phenomenon
of nature. All effects were explainable in terms of the mechanical
effects of such motions. Matter itself was, in fact, a collection of atoms
whose motions determined not only the behavior of an object but
also the sensations produced by that object.

Galileo therefore sought to isolate the characteristics of matter in
motion that could be measured and then be related by mathematical
laws. By analyzing and reflecting on natural phenomena he decided
to concentrate on such concepts as space, time, weight, velocity, accel-
eration, inertia, force, and momentum. Later scientists added power,
energy, and other concepts. In the selection of these particular prop-
erties and concepts Galileo again showed geninus, for the ones he
chose are not immediately discernible as the most important nor are
they readily measurable. Some, such as inertia, are not even obviously
possessed by matter; their existence had to be inferred from obser-
vations. Others, such as momentum, had to be created. Yet these con-
cepts did prove to be most significant in the rationalization and con-
quest of nature.

There is another element in the Galilean approach to science that
proved equally important in the sequel. Science was to be patterned
on the mathematical model. Galileo and his immediate successors felt
sure that they could find some laws of the physical world which would
appear to be as unquestionably true as the axiom of Euclid that a
straight line may be drawn through any two points. Perhaps contem-
plation, experimentation, or observation would suggest these axioms
of physics; at any rate, once they were discovered their truth would
be intuitively evident. With such fundamental intuitions these sev-
enteenth-century scientists hoped to deduce a number of other truths
in precisely the manner in which Euclid’s theorems followed from
his axioms.

In order to appreciate the significance of Galileo’s plan it is neces-
sary to realize that science is not a series of experiments regardless
of how intelligently or skillfully they are executed; nor is it a series
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of facts experimentally or theoretically deduced. The positive con-
tent of a science is a body of theory which encompasses, organizes,
relates, and illuminates a multitude of seemingly disconnected facts
in a coherent and consistent fashion and which is capable of leading
to new conclusions about the physical world. The individual facts or
experiments are of little value in themselves. The value lies in the
theory that unites them. The distances of the planets from the sun
are details. The heliocentric theory is knowledge of the first magni-
tude. Thus another of Galileo’s innovations was to make the scien-
tific theory, the connective tissue among facts, a body of mathematical
laws deducible from a set of axiomatic ones.

The Galilean plan contained, then, three main features. The first
was to seek quantitative descriptions of physical phenomena and
embody these in mathematical formulas. The second was to isolate
and measure the most fundamental properties of phenomena. These
would be the variables in the formulas. The third was to build up
science deductively on the basis of fundamental physical principles.

To put this plan into execution Galileo had to find fundamental
laws. We might obtain a mathematical formula relating the number
of marriages in Siam and the price of horseshoes in New York City
as these quantities vary from year to year. Such a formula is of no
value to science, however, for it does not encompass, either directly
or by implication, any useful information. The search for fundamen-
tal laws was another immense task because once again Galileo had to
break with his predecessors. His approach to the study of matter in
motion had to take into account an Earth moving through space and
rotating on its axis, and these facts in themselves invalidated much
of the only significant system of mechanics which the Renaissance
world possessed, namely, the mechanics of Aristotle.

In treating the behavior of objects on the Earth this ancient sage
had taught that each has a natural place and that the natural state of
a body is one of rest in that natural place. Heavy objects have their
natural place at the center of the Earth, which of course is the center
of the universe. Light objects. such as gases, have their natural place
in the sky. Objects not in their natural place but otherwise undis-
turbed by external forces will seek that place. Thus arises natural
motion. For example, an object released from the hand will seek the
center of the Earth and move toward it. When, however, an object
is thrown or pulled, the resulting motion is violent in nature.
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Since rest is the natural state, both natural and violent motion
niust be due to some force that acts continually; otherwise the motion
would cease. Also, all motion is continually subject to resistance. In
any case, the velocity of the motion can be expressed by the formula
(using modern notation) ¥V = F/R; or, stated in words, the velocity
depends directly on the force and inversely on the resistance. In the
case of natural motion the force is the weight of the object and the
resistance comes from the medium in which the object moves. Hence
heavier bodies must fall faster in a given medium because F in the
formula ¥ = F/R is larger and so ¥ must be. In violent motion the
force is applied by human hands or some man-made mechanism and
the resistance is due to the weight. Then for lighter bodies the re-
sistance R is less and therefore the velocity V' is greater. Hence lighter
bodies move faster when a given force is applied.

Special theory was required to explain some phenomena. For ex-
ample, a body that is dropped always gains speed. Now the force in
this natural motion is supplied by the weight and this quantity, as
well as the resistance of the medium, is constant. Hence, by the for-
mula V = F/R, the velocity should be constant. The acceleration, or
increase in velocity, was accounted for by the rush of air from the
front to the back of the body. This air supposedly exerted force on
the back and thus increased the velocity. Less scientifically minded
people explained that a body moved more jubilantly as it neared
home.

These laws of Aristotle are compounded of two parts of observa-
tion and eight parts of aesthetic and philosophical principles. Never-
theless, they served as the foundation for untold volumes of religion,
philosophy, and science written over many centuries. We may be sure
that Galileo’s task in unearthing fundamental laws of nature, like
Copernicus’ advocacy of the heliocentric theory, was infinitely harder
because he had to break with two thousand years of established
thought.

According to Aristotle a force is required to keep a body in motion.
Hence to keep an automobile or a ball moving, even on a very smooth
surface, some propelling force should be present. But Galileo had
greater insight into this phenomenon than did Aristotle. Actually a
rolling ball or moving automobile is hindered somewhat by the re-
sistance of air and retarded by friction between it and the surface on
which it rolls. If these hindering actions were not present no propel
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ling force would be needed to keep the automobile rolling. It would
continue at the same speed indefinitely; moreover, it would follow a
straight-line path. This fundamental law of motion, that a body un-
disturbed by forces will continue indefinitely at a constant speed and
in a straight line, which was discovered by Galileo, is now known as
Newton’s first law of motion. It is obviously a more penetrating prin-
ciple than the one Aristotle produced for the same situation. The law
says that a body will change its speed only if it is acted upon by a
force. Thus bodies possess the property of resisting change in speed.
This property of matter, namely resistance to change in speed, is
called its inertial mass or simply its mass.

1t should be pointed out, before we immerse ourselves further in
Galileo’s ideas, that his very first principle is in contradiction with
that of Aristotle. Does this mean that Aristotle made obvious blun-
ders or that his observations were too crude or too few to yield the
correct principle? Not at all. It is unlikely that mere observation
would have led Aristotle to improve on himself, or others to improve
on Aristotle. Aristotle was a realist and he taught what observations
actually do suggest. Galileo’s method, however, was more sophis-
ticated and consequently more successful. Galileo approached the
problem as a mathematician. He idealized the phenomenon by ignor-
ing some facts to favor others, just as the mathematician idealizes the
stretched string and the edge of a ruler by concentrating on some
properties to the exclusion of others. By ignoring friction and air
resistance and by imagining motion to take place in a pure Fuclidean
vacuum he discovered the correct fundamental principle. His trick
was to geometrize the problem and then obtain the law.

We may, however, ask, are not friction and air resistance real ef-
fects? Do they not cause an object to lose speed and eventually to stop
altogether? They do, sometimes; and when this occurs, friction and
air resistance should be taken into account. They are, however,
additional effects superimposed on the fundamental phenomenon,
namely, that an object in motion continues at a constant speed in-
definitely. Sometimes friction and air resistance are practically neg-
ligible, as when a one-pound piece of lead falls to the ground from a
height of a few hundred feet. Also, recognition of the fact that these
additional forces are present makes it possible to minimize their ef-
fect. Oil, ball bearings, and smooth surfaces reduce friction in mov-
ing machinery. Where the effect cannot be minimized, recognition
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of its existence allows us to take it into account explicitly and thereby
predict the correct motion. Galileo’s point here is precisely the point
the mathematician makes when he treats ideal figures. The measure-
ment of real triangles would produce angle sums varying from per-
haps 160° to 200°. The basic fact is that the angle sum of an ideal
triangle is 180° and in so far as a real triangle approximates the ideal
triangle, its angle sum will approximate 180°. The paradox behind
the achievements of modern science is that the scientist or mathema-
tician appears to distort a problem by idealizing it so much that he
affronts common sense, and then he proceeds to obtain the correct
solution. An account of just how successful Galileo’s approach proved
to be will appear shortly.

What can be said about the motion of a body if some force is
applied to it? Here Galileo made a second fundamental discovery.
The continuous application of a force causes a body to gain or lose
velocity. Let us call the gain or loss in velocity per unit of time the
acceleration of the body. Thus if a body gains velocity at the rate of
3o feet per second each second, its acceleration is go feet per second
each second, or in abbreviated form, go ft./sec.2. The second law of
motion states that if a force causes a body to gain or lose velocity
then the force, expressed in some suitable unit, is equal to the prod-
uct of the mass of the body and its acceleration. Expressed as a for-
mula this law says

(1) F = ma.

This formula is most significant. It implies that a constant force
produces a constant acceleration on a constant mass, for if F and m
are fixed, ¢ must be also. For example, a constant air resistance causes
a constant loss in velocity, and this accounts for the fact that an ob-
ject rolling or sliding on a smooth floor will lose velocity continually
until it has zero velocity.

Conversely, if a moving object does possess acceleration, that is,
it 4 in formula (1) is not zero, then the force F cannot be zero. Now
an object falling to the Earth from some height does possess accelera-
tion. Hence some force must be acting. In Galileo’s time the notion
had already gained some acceptance that this force must be the pull
of the Earth. Without, however, wasting much time on speculation
about this notion, Galileo investigated the quantitative facts about
falling bodies.
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He discovered that if air resistance is neglected all bodies falling
to the surface of the Earth have the same constant acceleration, that
is, they gain velocity at the same rate, 32 feet per second each second.
If the body is dropped, that is, merely allowed to fall from the
hand, it will start with zero velocity. Hence at the end of one second
its velocity is g2 feet per second; at the end of two seconds its velocity
is g2 times 2 or 64 feet per second; and so forth. At the end of ¢
seconds its velocity is g2t feet per second; in symbols,

(2) U = g2t.

This formula tells us exactly how the velocity of a falling body in-
creases with time. It says, too, that a body which falls for a longer
time will have a greater velocity. This is a familiar fact, for most
people have observed that bodies dropped from high altitudes hit
the ground at higher speeds than do bodies dropped from low alti-
tudes.

We cannot multiply the velocity by the time in order to find the
distance that a dropped body falls in a given amount of time. This
would give the correct distance only if the velocity were constant.
Galileo proves, however, that the correct formula for the distance
the body falls in ¢ seconds is

(8) d = 162,

d being the number of feet the body falls in ¢ seconds. For example,
in three seconds, the body falls 16- 3% or 144 feet.

By dividing both sides of formula (3) by 16 and then taking the
square root of both sides, we obtain the result that the time required
for an object to fall a given distance d is given by the formula

t =V d/16. It will be noticed that the mass of the falling body does
not appear in this formula. Hence all bodies take the same time to
fall a given distance. This is the lesson Galileo is supposed to have
learned by dropping objects from the tower of Pisa. Peaple still find
it difficult to believe, nevertheless, that a piece of lead and a feather
when dropped from a height in a vacuum reach the ground in the
same time.

Another useful formula can be derived by combining formulas
(2) and (g). By dividing both sides of formula (2) by g2 we get

t=v/32.
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If we substitute this value of ¢ in formula (3) we obtain

= 16(v/32)? = 16(v/32)(v/32),
or

(4) d = v2/64.

Formula (4) tells us that if we know the velocity of a freely falling
body then we can calculate the distance it has fallen to attain that
velocity.

Multiplying both sides of this formula by 64 gives

v2 = 64d,
or

(5) v =V 64d.

Formula (3) gives the velocity acquired by an object in falling a
distance d.

Let us take one more example of how the laws of motion can be
used to derive a significant formula. Consider the phenomenon of
a ball thrown straight up into the air. Of course, the height of the
ball above the ground changes continually as does the elapsed time.
Let ¢t be the number of seconds the ball travels, counting from the
instant it is thrown up, and let % be the height above the ground
attained by the ball in ¢ seconds. A useful formula to have in such a
situation is the one relating the variables # and ¢.

Suppose the ball is thrown into the air with enough force to give
it a speed of 100 feet per second as it leaves the hand. If no other
forces were to act on the ball, then according to Newton’s first law
of motion this speed would remain constant. In ¢ seconds the ball
would travel upward a distance equal to its speed multiplied by the
number of seconds it travels, or, in this case, a distance of 100f. At
the same time that the ball travels upward, however, it is pulled
toward the Earth, as is any ball that is merely dropped. According
to formula (3) the distance the ball is pulled toward the Earth in ¢
seconds is 16¢2 feet. Hence the motion of the ball is the result of two
separate motions taking place simultaneously, a rise of 100t feet in ¢
seconds and a fall of 16t feet in the same ¢ seconds. The height A
of the ball above the ground in ¢ seconds is therefore

(6) h = 100t — 16¢2
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The derivation of formulas such as (4), (), and (6) illustrates in
a small way how Galileo hoped to carry out his program of deriving
the important laws of nature from a few basic ones. We can see that
mathematical reasoning supported by the physical axioms permits
deductive derivation of laws. These examples, as well as others we
shall examine shortly, also illustrate how the mathematician can sit
back in his armchair and obtain dozens of significant laws of nature.
His tools, aside from paper and pencil, are the axioms and theorems
of mathematics and the axioms of physics such as the laws of mo-
tion. Mathematical deduction, the essence of his work, produces
knowledge of the physical world.

From these proofs Galileo proceeded to an observation which he
embodied in another law of motion. If one body is carried by an-
other, as a passenger is carried by an airplane, the first shares the
motion of the second. This seems obvious enough. But if the pas-
senger should suddenly be ejected from the plane he would still
have the horizontal motion of the plane; in fact, he would travel
right along with the plane if it were not for air resistance and the
downward pull of the Earth. This law explains why it is that objects
on the Earth are not left behind by its rotation and its revolution
around the sun.

The potential value of this law to the motion of projectiles is
obvious enough, and Galileo soon capitalized on it. While studying
the motion of projectiles he observed that an object’s motion can
result from two independent simultaneous motions. The meaning
of this discovery can be clarified by an example. An object dropped
from an airplane flying horizontally possesses two motions. In ac-
cordance with the law just described one is straight out in the same
direction as the plane is going; this motion takes place at the velocity
of the plane. The other motion is straight down. The combination
of these two simultaneous motions causes the object to travel down-
ward along a curve which, as Galileo pointed out, is part of a
parabola. However, the horizontal and vertical motions of the fall-
ing object are independent of each other. If the plane were traveling
faster, the horizontal motion of the object would be faster while
the downward motion would be the same. Hence the object would
take the same time to reach the ground as it did before, though it
would travel farther horizontally before reaching the ground. Thus
though the object might leave the plane at the point O in figure 48,
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it would hit the ground at the point Q when the plane’s speed is
greater rather than at the point P when the speed is less but the time
required to reach P or Q would be the same.

Galileo applied this principle of simultaneous independent mo-
tions to the motion of a cannon ball and proved that the path in this
case too is part of a parabola and that the greatest range is obtained
by firing the ball at an angle of 45° to the ground.

DIRECTION OF PLANE'S MOTION
O —— =~ -

P Q GROUND

Figure 48. Two freely falling objects with different horizontal velocities reach
the ground in the same time

All these results and many others were expounded by Galileo in
his Discourses and Mathematical Demonstrations Concerning Two
New Sciences, a masterpiece on which he labored for more than
thirty years. With this book Galileo launched modern physical sci-
ence on its mathematical course, founded the science of mechanics,
and set the pattern for modern scientific thought. Unfortunately, by
the time the manuscript was ready to be published Galileo was out
of favor with the Church and publication of any work by him was
forbidden. He then had to arrange secretly for its publication in
Holland and to pretend that he had had nothing to do with the
printing. He maintained that a copy of the manuscript had fallen
by chance into the hands of the Dutch publishers, who proceeded
without his permission. Galileo died a few years after the publica-
tion in 1638, and with him the independent spirit of Italian thought
died also.



XIV

The Deduction of Universal Laws

I wish that old Copernicus could see

How, through his truth, that once dispelled a dream,
Broke the false axle-trees of heaven, destroyed

All central certainty in the universe,

And seemed to dwarf mankind, the spirit of man
Laid hold on law, . . .

And mounting, slowly, surely, step by step,

Entered into its kingdom and its power.*

ALFRED NOYES

Fortunately for science and mathematics, in a country with a freer
intellectual atmosphere than Italy’s a worthy successor to Galileo
was born. In 1642, the very year of Galileo’s death, on a farm located
in a secluded English hamlet, a woman recently widowed gave birth
to a frail and premature child. From such an insignificant origin and
with a body so weak that his life was despaired of, Isaac Newton
lived to be eighty-five and to acquire fame as great as any man’s.

Except for a strong interest in mechanical contrivances Newton,
like many geniuses, showed no special promise as a youth. For the
negative reason that he showed no interest in farming his mother
sent him to Cambridge. Despite several advantages of attendance
there, such as the opportunity to study the works of Copernicus,
Kepler, and Galileo and the opportunity to listen to the famous
mathematician Isaac Barrow, Newton seemed to profit little. He was
even found to be weak in geometry and at one time almost changed
his course of study from natural philosophy to law. Four years of
study ended as unimpressively as they began and Newton returned
home-—to study.

* Reprinted from Watchers of the Sky by Alfred Noyes, copyright by Alfred Noyes,
1922, 1949, with the permission of the publisher J. B. Lippincott Company, New York,
Mr. Hugh Noyes, and the publisher Wm. Blackwood and Souns Ltd., Edinburgh and

London. 196
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This quiet and unobtrusive intellect burst forth brilliantly when,
between the ages of twenty-three and twenty-five, Newton made three
gigantic steps which secured his reputation and advanced modern
science enormously. The first was the discovery of the secret of color
which he arrived at by decomposing white light; the second was
the creation of the calculus, which we shall discuss later; and the
third was his proof of the universality of the law of gravitation.

Had he announced any one of these achievements to the scientific
world, he would have earned enduring fame at once; but Newton
said nothing about them. When a plague which had been raging in
London abated he returned to Cambridge to secure his master’s
degree and then became a fellow. When he was twenty-seven his
teacher, Barrow, resigned and Newton, now recognized at least as a
serious student of mathematics, was appointed in his place. His suc-
cess as a lecturer did not parallel his success in research. At times no
one attended. The original material he presented was not even no-
ticed, much less acclaimed.

He finally published his work on the composite nature of white
light, accompanying it with a presentation of his philosophy of sci-
ence. Both the philosophy and the work on light were criticized and
some scientists rejected both in toto. Newton was disgusted and re-
solved to refrain from further publication. When, several years later,
he broke this resolution to announce further discoveries, he became
embroiled in scientific controversies and arguments over priority
of discovery, which confirmed his inclination to keep his research
to himself. Were it not for the urging and financial assistance of the
astronomer Edmond Halley, the Mathematical Principles of Nai-
ural Philosophy (1687), which embodied the fruit of Newton’s
work, would never have been published.

After the publication he finally did receive widespread acclaim.
The Principles went through many editions, and popularizations
became common. By 148g, forty editions had appeared in English,
seventeen in French, eleven in Latin, three in German, and at least
one in Portuguese and Italian. Among the popularizations was one
entitled Newtonianism for Ladies which also went through many
editions. Actually the Principles needed popularization, for the
book is extremely difficult to read and is not at all clear to laymen,
despite statements by educators to the contrary. The greatest mathe-



198 MATHEMATICS IN WESTERN CULTURE

maticians worked for a century to elucidate fully the material of
the book.

Newton’s fame spread until it became comparable to Einstein’s
today. Newton gave due credit to his predecessors: ‘If I have seen a
little farther than others it is because I have stood on the shoulders
of giants.” Nor did he feel that his work was of incomparable impor-
tance: ‘I do not know what I may appear to the world; but to myself
I seem to have been only like a boy playing on the seashore, and
diverting myself in now and then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.

Of the great contributions of his youth, Newton’s philosophy of
science and his work on gravitation are most relevant to our present
subject. The philosophy stated more explicitly the program for sci-
ence which Galileo had initiated: From clearly verifiable phenom-
ena laws are to be framed that state nature’s behavior in the precise
language of mathematics. By the application of mathematical reason-
ing to these laws new ones are to be deduced. Like Galileo, Newton
wished to know fow the Almighty had fashioned the universe but
he was not presumptuous enough to inquire toward what end, nor
did he hope to fathom the mechanism behind many phenomena.
He said: ‘“To tell us that every species of things is endowed with an
occult specific quality by which it acts and produces manifest effects,
is to tell us nothing: But to derive two or three general principles
of motion from phenomena, and afterwards to tell us how the prop-
erties and actions of all corporeal things follow from those manifest
principles, would be a very great step in philosophy [science) though
the causes of those principles were not yet discovered:* and therefore
I scruple not to propose the principles of motion above mentioned,
they being of very general extent, and leave their causes to be found
out.’

In this task of describing nature Newton’s most famous contribu-
tion was to unite heaven and Farth. Galileo had viewed the heavens
as no man had previously been able to, but his successes in describ-
ing nature mathematically were limited to motions on or near the
surface of the Earth. During Galileo’s lifetime his contemporary,
Kepler, had obtained his three famous mathematical laws on the
motions of the heavenly bodies and had thereby clinched the argu-

* The italics are Newton’s.
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ment for the heliocentric theory. Thus while one scientist was build-
ing the science of earthly motions, the other perfected the theory
of the heavenly motions. The two branches of science seemed to be
independent of each other. The challenge to find some relationship
between them stirred the great scientists. It was met by the greatest
one.

There was good reason to believe that some unifying principle
did exist. Under Galileo’s first law of motion bodies should con-
tinue to move in straight lines unless disturbed by forces. Hence
the planets, set into motion somehow, should move in straight lines
whereas, according to Kepler, they moved in ellipses around the sun.
Some force must therefore be acting so as to deflect the planets con-
tinually from straight-line paths, just as a weight swung at the end
of a string does not fly off in a straight line because the hand exerts
a force pulling it in. Presumably the sun itself was acting as an at-
tracting force on the planets. The scientists of Newton’s day also
appreciated the fact that the Earth attracts bodies to it. This attrac-
tion accounted for the fall to Earth of a body released from the
hand; otherwise, since the body receives no force from the hand it
would, according to the first law of motion, remain suspended in air.
Since both the Earth and the sun attract bodies, the idea of unifying
both actions under one theory was advanced and discussed even in
Descartes’ time.

Newton converted a common thought into a mathematical prob-
lem and, without determining the physical nature of the forces in-
volved, solved this problem by brilliant mathematics. He was able to
show that the very same mathematical formula describes the action
of the sun on the planets as well as the action of the Earth on objects
near it. Because the same formula described both classes of phe-
nomena he concluded that the same force operated in both cases.
Story has it that the identity of the Earth’s pull on objects and the
sun’s pull on the Earth was brought to Newton’s attention by the
fall of an apple from a tree. The mathematician Gauss, however,
said that Newton told this story to dispose of stupid persons who
asked him how he discovered the law of gravitation. At any rate,
this apple, unlike another that played a role in history, improved
the status of man.

Newton’s reasoning in showing that the same formula applied to
heavenly and earthly bodies is now classic. We shall consider a some-
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what crude version of it which may nevertheless give the essence.
The path of the moon around the Earth is roughly a circle. Since
the moon, M in figure 49, does not follow a straight-line path such
as MP, it evidently is pulled toward the Earth by some force. If
MP were the distance the moon might have moved in one second
with no gravitational force acting, then PM’ is the distance the moon
is pulled toward the Earth during that second. Newton used PM’

DISTANCE THE MOON
/ WOULD MOVE IN
ONE SECOND

P

OISTANCE THE MOON

IS PULLED TOWARD

THE EARTH IN ONE
SECOND

MOON'S PATH
Figure 49. The gravitational effect of the Earth on the moon

as a measure of the Earth’s attractive force on the moon. The cor-
responding quantity in the case of a body near the surface of the
Earth is 16 feet, for a body dropped from the hand is pulled 16 feet
toward the Earth in the first second. Newton wished to show that
the same force accounted for both PM’ and the 16 feet.

Rough calculation had led him to believe that the force attracting
one body to another depends on the square of the distance between
the centers of the two bodies involved, and that this force decreases
as the distance increases. The distance between the center of the
moon and the center of the Earth is about 6o times the radius of the
Earth. Hence the effect of the Earth on the moon should be 1/(60)?
of its effect on a body near the surface of the Earth, that is, the moon
should be pulled toward the Earth 1/(60)% of 16 or .0044 feet each
second. By using some numerical results obtained by means of the
trigonometric ratios, Newton found that the moon is pulled toward



THE DEDUCTION OF UNIVERSAL LAWS 201

the Earth by just that amount each second. Thus he had obtained
a most important piece of evidence to the effect that all bodies in
the universe attract each other in accordance with the same law.

More extensive investigations showed Newton that the precise
formula for the force of attraction between any two bodies is given
by the formula

(1) F = kRMm/7%,

where F is the force of attraction, M and m are the masses of the
two bodies, 7 is the distance between them, and % is the same for all
bodies. For example, M could be the mass of the Earth and m, the
mass of an object near or on the surface of the Farth. In this case
r is the distance from the center of the Farth to the object. For-
mula (1) is, of course, the law of gravitation.

Having obtained the correct form of this law by studying the
motion of the moon, Newton showed next that the law could be
applied to motions on or near the Earth. According to this law the
Earth attracts each body. We feel this pull of the Farth on a body
when we hold it. When M is the mass of the Earth and m is the
mass of the body, then F in formula (1) measures the pull of the
Earth on the body or the weight of the body. We should note, then,
that weight is a force, whereas mass is a quality of objects that con-
cerns resistance to change in motion.

Newton was careful to distinguish between these two related prop-
erties of matter, that is, mass and weight. While the mass of a body
is constant, its weight may vary. For example, if the distance of a
body from the center of the Earth is altered, the weight of the body
is altered. Specifically, if a body of mass m is taken up 4000 miles
above the Earth, its distance from the center of the Earth is doubled.
Now, if r in formula (1) represents its original distance from the
center, 27 represents its new distance. To calculate the weight of the
mass at the new position we replace » by 2r. The denominator in
formula (1) becomes (27)2 or 47°. Hence F would be only a fourth
as much as when the body is on the Farth. That is, a body of mass
m would weigh only a fourth as much 4000 miles above the Earth
as it does on the surface of the Earth. To summarize, we have been
demonstrating that though the mass of an object remains constant,
its weight can be varied by altering its distance from the center of
the Earth.
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Consider another consequence of formula (1). Let M be the mass
of the Earth and m the mass of an object near the surface. If we re-
write formula (1) as

(2 e

Now regardless of what object near the Earth’s surface we consider,
the quantities on the right side of formula (2) are the same, because
r is about 4000 miles, M is the mass of the Earth, and % is the same
for all bodies. Hence for any object near the surface of the Earth, the
ratio F/m, that is, the ratio of weight to mass, is constant. Thus the
two distinct properties of matter are related quantitatively in a very
simple way. An explanation of this surprising relationship was not
known until the theory of relativity was created. Since we almost
always deal with objects near the surface of the Earth we are misled
by this constant relationship between mass and weight and often
confuse the two. For example, if we try to start an automobile by
pushing it, we are inclined to attribute the need for force to the
weight of the automobile. Actually, it is the mass exhibiting its re-
sistance to change in motion.

From the second law of motion and the law of gravitation we can
deduce still another consequence. The second law of motion says
that any force acting on a body of mass m gives the body an accelera-
tion. In particular, the force of gravity exerted by the Earth on a
body should give it an acceleration. But the force of gravity is

(3) kMm

3 = e

whereas the relation of any force to the acceleration it causes is
(4) F = ma.

When the force F in formula (4) is that of gravity we can equate the
right sides of formulas (3) and (4) because the left sides are then
equal; that is,

ka.

72

ma =
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We may divide both sides of this last equation by m and obtain

M
(5) oM

r2

This result says that the acceleration imparted to an object by the
force of gravity of the Farth is always kM /7% Since k is a constant,
M is the mass of the Earth, and 7 is the distance of an object from
the center of the Earth, the quantity kM/7? is the same for all bodies
near the surface of the Earth. Hence all such bodies fall with the
same acceleration. This, of course, is the result Galileo had already
obtained by inference from experiments and from this result he
proved mathematically that all bodies falling from the same height
reach the ground in the same amount of time. Incidentally, the value
of a is readily measured and is g2 feet per second each second.

Many more fascinating results can be obtained from the laws of
motion and gravitation. To illustrate the power of mathematical
reasoning we shall derive one more conclusion: Let us calculate the
mass of the Earth. For this purpose we need the value of %, the
constant of universal gravitation, which appears in formula (1).
Since this quantity is always the same, regardless of which masses
appear in formula (1), it can be obtained in a laboratory by using
known masses m and M, a known distance r between them, and by
measuring the force of attraction F between them. Hence %, the only
unknown in the formula, can then be calculated. This experiment
was performed by many physicists, the most famous of whom was
Henry Cavendish (1731-1810). He came to the conclusion that k&
is the extremely small quantity 6.67 X 10-8, or 6.67 divided by one
hundred million, assuming that measurements are made in centi-
meters, grams, and seconds.

We may now use formula (5) wherein & is the quantity discussed
above, M is the mass of the Earth, r is the radius of the Farth, and
a is the acceleration of an object near the Earth. Since all these quan-
tities except M are now known, we can calculate M. The result is
M = 6 X 10% grams, that is, 6 multiplied by 27 zeros, or 6.6 X 10%
tons of mass.

An interesting by-product of this calculation is some information
about the composition of the Earth. Since the radius of the Earth
is known, its volume, assuming it is exactly spherical in shape, can
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be calculated from the formula for the volume of a sphere,
V = %=r3. Now the mass of a cubic foot of water can be measured
and hence the mass of the Earth, were it composed entirely of water,
could be calculated. The actual mass of the Farth given above is
about 514 times the mass it would have were it composed entirely
of water. Hence geologists conclude that the interior of the Earth
must be composed of heavy minerals.

Thus far Newton’s contributions to the theory of gravitation may
be summarized as follows. By studying the motion of the moon, he
had inferred the correct form of the law of gravitation. He then
showed that this law and the two laws of motion sufficed to estab-
lish valuable knowledge about the motions of objects on the Earth.
He had therefore achieved one of the major goals in Galileo’s pro-
gram because he had shown that the laws of motion and gravitation
were fundamental. Like the axioms of Euclid, they served as the
logical basis for other valuable laws. What a triumph indeed it
would be to deduce in addition the laws of motion for the heavenly
bodies.

This triumph was also reserved for Newton. A truly momentous
series of deductions made by him showed that all three of Kepler’s
laws follow from the two basic laws of motion and the law of gravi-
tation. We shall give the essence of one of these derivations, again
with the purpose of illustrating the power of mathematics to obtain
knowledge of the physical world by the deductive process. The deri-
vation we shall present will be a somewhat simplified version of
Newton’s actual work, for we shall suppose the path of each planet
to be circular rather than elliptical. Newton himself did treat the
elliptical path but there is no need for us to follow this more difficult
demonstration.

Kepler’s third law states that the square of the time of revolution
of any planet is proportional to the cube of its mean distance from
the sun. As a formula this law is written T2 = KD3, wherein T is
the time of revolution or length of the planet’s year, D is the planet’s
mean (or average) distance from the sun, and K is a constant, that
is, it is the same for all the planets. To derive Kepler’s third law we
shall need one more fact about motion, which is in itself easy to
prove but which is aside from our main point. An object that moves
in a circle is subject to some force which causes it to depart from the
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straight-line path Newton’s first law of motion says it should other-
wise follow. A measure of this force, commonly called the centripetal
force, is given by the formula

(6) F= -

wherein m is the mass of the body, v is its velocity, and r is the
radius of the circular path. Such a force acts on each planet and is
due to the gravitational pull of the sun. Formula (6), however, is a
correct expression for centripetal force whether or not it arises from
gravitation.

To proceed with the derivation of Kepler's law, we notice first
that the velocity of a planet, assuming it travels at a constant speed
along a circular path, is given by the circumference of the circle
divided by the time of revolution. That is,

2T

(7) U= T'

If we substitute this value of v in formula (6) we obtain an expres-
sion for the centripetal force F acting on a planet, namely,

r\ T

Now this centripetal force F is due to the gravitational force exerted
by the sun whose mass we denote by M. That is,

2 2,2 2
(8) _ _n}(@]_‘) _ m4ar®  mga’r

kmM

r2

(9) F=

By equating the two forces given in formulas (8) and (g) we obtain

kmM  m4x®r
(10) Pz T

We may divide both sides of this equation by m, thus canceling this
factor on each side. If we multiply both sides byT%? and divide
by £M we obtain

I Ly
(xr) T_ch
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We now observe that M, the mass of the sun, and %, the gravitational
constant, do not change in this derivation no matter which planet,
m, we consider. Hence, the quantity of 4=2/kM is a constant and we
shall denote it by K. Writing D for 7, we may say that

(12) T? = KD?,

and this result is Kepler’s third law. Thus the famous planetary laws
that Kepler obtained only after years of observation and trial and
error can be proved in a matter of minutes by means of Newton's
laws.

There is an important corollary to these laws that should be in-
formative to the lay reader who seeks an explanation of the power
of mathematics. The major value of the Newtonian laws lies, as we
have just seen, in the fact that they apply to so many varied situa-
tions on heaven and Earth. The same quantitative relationships
epitomize characteristics common to all. Hence knowledge of the
formulas really represents knowledge about all the situations en-
compassed by the formulas. The person who looks at a mathematical
formula and complains of its abstractness, dryness, and uselessness
has failed to grasp its true value.

The work of Galileo and Newton was not the end but the begin-
ning of a program for science. Newton himself formulated the pro-
gram in the preface to his Mathematical Principles of Natural Phi-
losophy, the classic which contains the work of his brilliant youth:

We offer this work as mathematical principles of philosophy [sciencel;
for all the difficulty in philosophy seems to consist in this—from the phe-
nomena of motions to investigate the forces of nature, and then from
these forces to demonstrate the other phenomena; and to this end the
general propositions in the first and second book are directed. In the
third book we give an example of this in the explication of the system
of the world; for by propositions mathematically demonstrated in the
first book, we there derive from the celestial phenomena the forces of
gravity with which bodies tend to the sun and the several planets. Then,
from these forces, by other propositions which are also mathematical,
we deduce the motions of the planets, the comets, the moon and the sea.
I wish we could derive the rest of the phenomena of nature by the same
kind of reasoning from mechanical principles; for I am induced by many
reasons to suspect that they may all depend upon certain forces by which
the particles of bodies, by some causes hitherto unknown, are either mu-
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tually impelled towards each other, and cohere in regular figures, or are
repelled and recede from each other.

Like a rock rolling down a steep hill the movement to secure
fundamental mathematical laws and to deduce their consequences
gathered momentum and finally caused an avalanche. By procedures
similar to those illustrated in this chapter, the mass of the sun and
the mass of any planet with observable satellites were calculated.
The idea of centrifugal force, the force that opposes the centripetal
force discussed above, was applied to the motion of the Earth and
produced the magnitude of the equatorial bulge of the Earth as well
as the consequent variation of the weight of an object from point to
point on the Earth’s surface. From the knowledge of the observed
departure from sphericity of the several planets it became possible
to calculate their periods of rotation. The tides were shown to be
caused by the gravitational attractions of the sun and moon. The
paths of comets were computed and their reappearance predicted ac-
curately. Also their sudden sweep past the Earth was explained as
owing to the great eccentricity of their elliptical orbits. Incidentally,
this mathematical work on the behavior of the comets convinced
people that the comets were legal members of a lawful, designed uni-
verse rather than visitations from God intended to strike terror into
the hearts of men or to smash the Earth into bits. At the same time
it gave indisputable evidence of the mathematical behavior of nature
and of the power of the quantitative approach.

The success of the search for laws extended far beyond the field
of astronomy. The phenomenon of sound studied as a motion of
molecules in air yielded now famous mathematical laws. Hooke
measured the elasticity of solids. Boyle, Mariotte, Galileo, Toricelli,
and Pascal measured the pressure and density of fluids and gases.
Van Helmont used the balance to weigh substances, an important
step in the direction of modern chemistry, and, with Hales, began
quantitative studies in physiology such as the measurement of body
temperature and blood pressure. Harvey proved by quantitative ar-
guments that the blood pumped from thé heart made a complete
circuit of the body before returning to the heart. Quantitative studies
extended to botany, too, where the rate of absorption and evapora-
tion of water by plants was determined. Romer measured the veloc-
ity of light. The cold of winter and the heat of summer were found
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to be less or more excited motions of air molecules attracting each
other according to the law of gravitation. Soon laws binding to-
gether separate branches of science were discovered. For example,
chemistry, electricity, mechanics, and heat phenomena were all
bound together by the law of conservation of energy.

All this was only the beginning of the vast and unparalleled sci-
entific movement that has fashioned the modern world. The course
of the movement continued to support Newton’s conviction as to the
possibility of deriving all the phenomena of nature from the laws
of motion and gravitation. One or two examples chosen from the
superlative accomplishments of the eighteenth century will indicate
the extent to which his program was carried.*

Though evidence was overwhelmingly in favor of the invariable,
mathematical order of the heavens by the time of Newton’s death
in 1424, a number of irregularities in the motions of the heavenly
bodies had been observed and were unaccounted for. For example,
although the moon always presents the same face to the Earth, more
or less of the region near the edges becomes periodically visible. In
addition, increased observational accuracy had revealed that the
length of the mean lunar month decreases by about 14, of a second
per century (such was the order of accuracy that observation and
theory had come to handle). Finally, small changes in the eccen-
tricities of the planetary orbits had also been observed.

These and other departures from perfect law and order added up
to one large question: Is the solar system stable? That is, would these
irregularities, small as they were, gradually increase and, by virtue of
the complicated effects of the heavenly bodies on each other, tend
to unbalance the solar system? Why should not a planet, under the
cumulative effect of these irregularities, wander off into space some
day, or why should not the Earth at some future date crash into
the sun?

Newton was well aware of many of these irregularities, and in his
own studies he had tackled the motion of the moon. This body fol-
lows an elliptical path, somewhat as a drunken man follows a straight
line. It hurries and lingers, and reels from side to side. Newton was
convinced that some of this extraordinary behavior was due to the
fact that the sun as well as the Earth attracts the moon and causes
departures from a truly elliptical path. However, since he had no

* See also Chapters X1X and xx.
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proof that all the observed irregularities in the motions of the moon
and the planets were due to gravitational pulls and since he could
not show that the cumulative effect would not ultimately disrupt
the solar system, he felt obliged to call on God’s intervention to keep
the universe functioning. But Newton’s eighteenth-century succes-
sors decided to rely less on God’s will and more on their own powers
of deduction.

The path of each planet around the sun would be an ellipse only
if the one planet and the sun were in the heavens. But the solar
system contains eight planets, many with moons, all not only moving
around the sun but attracting each other in accordance with New-
ton’s universal law of gravitation. Their motions, therefore, certainly
could not be truly elliptical. Their exact paths would be known if it
were possible to solve the general problem of determining the mo-
tion of an arbitrary number of bodies, each attracting all the others
under the action of gravitation. But this problem is beyond the
capacity of any mathematician. Two of the greatest mathematicians
of the eighteenth century did, however, make phenomenal steps
along these lines. The Italian-born Joseph Louis Lagrange, in a
brilliant exhibition of youthful genius, tackled the mathematical
problem of the moon’s motion under the attraction of the sun and
Earth and solved it at the age of twenty-eight. He showed that the
variation in the portion of the moon that is visible is caused by the
equatorial bulges of both the Earth and the moon. In addition, the
attraction of the sun and moon on the Earth was shown to perturb
the Earth’s axis of rotation by calculable amounts; and thus the
wandering of the Earth’s axis of rotation with the consequent pre-
cession of the equinoxes, an observational fact known at least since
Greek times, was shown to be a mathematical necessity of the law
of gravitation. Lagrange made another notable step in his mathe-
matical analysis of the motions of the moons of Jupiter. The analysis
showed that the observed irregularities there too were an effect of
gravitation. All these results he incorporated in his Mécanique
analytique, a work which extended, formalized, and crowned New-
ton’s work on mechanics. Lagrange had once complained that New-
ton was a most fortunate man in that there is but one universe and
Newton had already discovered its mathematical laws. However,
Lagrange had the honor of making apparent to the world the per-
fection of the Newtonian theory.
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The Frenchman, Pierre Simon Laplace, who, like Lagrange,
showed genius in his youth, devoted his life to the problem of
applying Newton’s law of gravitation to the solar system. One of
Laplace’s spectacular achievements was the proof that the irregu-
larities in the eccentricities of the elliptical paths of the planets were
periodic. That is, these irregularities would oscillate about fixed
values and not become larger and larger and so disrupt the orderly
motions of the heavens. In brief, the universe is stable. This result
Laplace proved in his epochal work, the Mécanique céleste, which
he published in five volumes over a period of twentysix years.

The perfection of the mathematical order of the universe was, by
the time of Laplace’s death (exactly one hundred years after New-
ton’s) now clearly evident. It reflected itself in the famous reply of
Laplace to Napoleon who, on receiving a copy of the Mécanigue
céleste, chided Laplace for writing a work on the system of the uni-
verse that did not mention God. Laplace’s reply was: ‘I have no
need of this hypothesis.” The world was stable and God was no
longer required, as He had been by Newton, to correct its irregu-
larities or to prevent errant behavior.

One remarkable deduction from the general astronomical theory
of Lagrange and Laplace is especially worth mentioning. This was
the purely theoretical prediction of the existence and location of
the planet Neptune. It had been conjectured that unexplained aber-
rations in the motion of the planet Uranus were due to the gravi-
tational pull on Uranus of an unknown planet. Two astronomers,
John Couch Adams in England and U. J. J. Leverrier in France,
used the observed irregularities and the general astronomical theory
to calculate the orbit of the supposed planet. Observers were then
directed to search for the planet at the time and place determined
mathematically by Adams and Leverrier. The planet was located.
It was barely observable with the telescopes of those days and would
hardly have been noticed if astronomers had not been looking for
it at the predicted location. The problem Adams and Leverrier
solved was an extremely difficult one because they had to work
backward, so to speak. Instead of calculating the effects of a planet
whose mass and path were known, they had to deduce the mass and
path of an unknown planet from its effects on the motion of Uranus.
Their success was therefore regarded as a great triumph of theory
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and widely proclaimed as final proof of the universal application of
Newton’s law of gravitation.

By the middle of the eighteenth century the infinite wisdom of
Galileo’s and Newton's quantitative approach to nature was clearly
established. Had they undertaken the perhaps unsolvable problem
of analyzing matter and forces qualitatively, they might have ad-
vanced science no farther than the medievalists did. The problem
of the structure of matter is highly complex; indeed modern research
in atomic theory is beginning to make us aware of the almost un-
believable degree of this complexity. Galileo and Newton avoided
discussion of the structure of matter but showed how to measure its
inertial and gravitational properties in terms of acceleration, which
means in terms of distance and time. The force of gravity has also
defied qualitative analysis. In fact, Newton admitted that the nature
of this force was a mystery to him. Just how it could reach out g3
million miles and pull the Earth toward the sun seemed inexplicable
to him and he framed no hypotheses concerning it. He hoped that
others would study the nature of this force. People did try to ex-
plain it in terms of pressure exerted by some intervening medium
and by other processes, all of which proved unsatisfactory. Later, all
such attempts were abandoned and gravitation was accepted as a
‘common unintelligibility.” But despite total ignorance about the
physical nature of gravity, Newton did have a quantitative formula-
tion of how it acted, and this was both significant and usable. The
paradox of modern science is that though it is content with seeking
so little it accomplishes so much.

There are other vital implications of Galileo’s and Newton’s
work.* Copernican theory had brushed away some of the mysticism,
superstition, and theology which veiled the heavens and enabled
man to view them in a more rational light. Newton’s law of gravita-
tion cleared out the cobwebs from the corners, for it showed that
the planets follow the same pattern of behavior as do the familiar
objects moving on the Earth. This fact provided additional and
overwhelming evidence for the conclusion that the planets are com-
posed of ordinary matter. The identification of the stuff of heaven
with the crust of Earth wiped out libraries of doctrines on the na-
ture of heavenly bodies. In particular, the distinction affirmed by

* See Chapters XvI, Xvii, Xvil, and XxI.
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the great Greek and medieval thinkers between the perfect, un-
changeable, and incorruptible heavens and the decaying, imperfect
Earth was now shown all the more clearly to be a figment of men’s
imaginations.

Over and above the identification of the Earth and the heavenly
bodies, Galileo’s and Newton’s work established the existence of uni-
versal, mathematical laws. These laws described both the behavior
of a speck of dust and the most distant star. No corner of the uni-
verse was outside their range. Thus the evidence for the mathemati-
cal design of the universe was immensely strengthened. Moreover,
the unvarying adherence of natural phenomena to the pattern of
these laws spoke for the uniformity and invariability of nature and
opposed the medieval belief in an active Providence to whose will
the universe was continually subject.

The seventeenth century found a qualitative world subject to
divine will and understood only in terms of the ways and purposes
of the Creator. It bequeathed to mankind a mechanical universe
operating unfailingly in accordance with invariable, universal mathe-
matical laws. It will become clearer as we proceed that the change
inaugurated in that period was no less than a cultural revolution.

There is a lesson to be learned from reviewing the major steps
leading to this intellectual upheaval. The study of the heavens pro-
vided the first great scientific synthesis in the form of the astronomi-
cal theory of Eudoxus. This was followed by the quantitative, prac-
tically useful, and highly influential system of Hipparchus and
Ptolemy. Further study of the heavens produced the revolutionary
astronomy of Copernicus and Kepler. On the basis of a heliocentric
theory the universal law of gravitation became a tenable hypothesis.
The validity of the law was further attested to by the deduction from
it of Kepler’s laws. Finally, the astronomical work of Lagrange and
Laplace removed all doubts about the reign of universal mathemati-
cal laws in nature. The lesson to be gathered from this history is
that the curious stargazer can tell us more about our world than the
practical ‘man of affairs.” Our best knowledge of the behavior of
even those natural phenomena pervading our immediate environ-
ment has come from the contemplation of the heavens and not from
the pursuit of practical problems. The sense of law that predisposes
men to attribute all phenomena, even completely inexplicable ones.
to regular rather than to abnormal behavior of nature, this habit
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of substituting law for supernatural intervention, was developed by
looking away from man’s immediate problems and by studying the
motion of the most distant stars.

The work of Copernicus, Kepler, Galileo, and Newton made pos-
sible the realization of many dreams. There was the dream and
hope of ancient and medieval astrologers of anticipating nature’s
ways. There was also the plan that Bacon and Descartes had ad-
vanced of mastering nature for the improvement of human welfare.
Man progreéssed toward both goals, the scientific and the technologi-
cal. The universal laws certainly made possible prediction of the
phenomena they comprised. And mastery is but a step away from
prediction, for knowing the unfailing course of nature makes pos-
sible the employment of nature in engineering devices.

Still another program for probing and understanding nature
found fulfillment in the work of Galileo and Newton. The Pythag-
orean-Platonic philosophy that number relations are the key to the
universe, that all things are known through number, is an essential
element in the Galilean scheme of relating quantitative aspects of
phenomena through formulas. This philosophy was kept alive
throughout the Middle Ages though most often, as with the Pythag-
oreans themselves, it was part of some larger mystical theory of crea-
tion, with number as the form and cause of all created objects.
Galileo and Newton divested the Pythagorean doctrine of all mysti-
cal associations and re-clothed it in a style that set the fashion for
modern science.



XV

Grasping the Fleeting Instant: The Calculus

When Newton saw an apple fall, he found

In that slight startle from his contemplation—
*T'is said (for I'll not answer above ground

For any sage’s creed or calculation)—

A mode of proving that the earth turn’d round
In a most natural whirl, called ‘gravitation’;

And this is the sole morial who could grapple,
Since Adam, with a fall, or with an apple.

LORD BYRON

The derivation of universal laws undoubtedly had to await an age
disposed to think in such terms and leaders such as Descartes,
Galileo, and Newton who could fashion the goals and methods of
modern scientific activity. But it also had to await, and indeed would
have been impossible without, the creation of an indispensable tool—
the calculus. Of all the veins of thought explored by geniuses of the
seventeenth century, this one proved to be the richest. Over and
above its value in the derivation of many of the universal laws
already discussed, the calculus provided the wealth to found many
new scientific enterprises.

Contrary to the popular belief that genius breaks radically with
its age, three of the greatest seventeenth-century minds, Pierre Fer-
mat, Isaac Newton, and Gottfried Wilhelm Leibniz, each working
independently of the other, became absorbed in the problems of the
calculus. Fermat did his work in France, Newton in England, and
Leibniz in Germany. This third member of the triumvirate of
genius, who is new to our story, was born in Leipzig in 1646. At the
age of fifteen he entered the University of Leipzig for the announced
purpose of studying law and with the unannounced intention of
studying everything. An essay on law written soon after he left Leip-
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zig attracted the attention of the Elector of Mainz who thereupon
decided to employ Leibniz as a diplomat. Unfortunately, his time
for study during this period was limited because poverty forced him
to continue to serve as errand boy extraordinary for German princes.
In 1676 he was appointed councilor and librarian to the Elector of
Hannover, and this job, though still requiring him to travel a great
deal on diplomatic missions, allowed him some leisure. In his spare
time, then, he managed to write articles, essays, and letters which
fill more than twenty-five volumes with profound contributions to
law, religion, politics, history, philosophy, philology, logic, eco-
nomics, and, of course, science and mathematics. This man of uni-
versal gifts and interests has been called ‘a whole academy in him-
self.’

Numerous capable mathematicians had already made progress in
the direction of the calculus. The work of Fermat, Newton, and
Leibniz was, therefore, the continuation and the culmination of a
long series of efforts on the part of their predecessors. Apparently,
no matter how great are the contributions of individual genius, the
spirit and substance of its thoughts are confined to its own age. The
contribution of genius is to sense and fructify the ideas which the
particular age stirs up. It makes capital of society’s cogitations and
returns dividends for centuries thereafter.

Whatever conclusions may be drawn about the relation of genius
to its age, there is no doubt that the concepts of the calculus were
in the seventeenth-century air, so much so, in fact, that a quarrel
arose between the friends of Newton and those of Leibniz over
whether a breeze from England had not carried Newton’s ideas to
Leibniz. The feelings engendered by the quarrel were so bitter and
the leading thinkers in this most rational of subjects were so partisan
that the English and Continental mathematicians stopped the inter-
change of ideas and correspondence for about a hundred years after
the deaths of Newton and Leibniz. Nor was the language used by
either side to comment on the work of the other always sober and
rational, or even polite. One exception to this state of affairs was a
very generous remark by Leibniz, namely, that if one took mathe-
matics from the beginning of the world to the time when Newton
lived what the Englishman did was much the better half.

During the period in which Fermat, Newton, and Leibniz worked,
he mathematicians of Europe were united in seeking to solve a
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whole group of problems involving a very special type of difficulty—
the instantaneous rate of change of variables. Before examining the
decisive contributions of the three men we must be clear about the
nature of the problem they faced.

In dealing with variables, that is, quantities which change con-
tinually, it is necessary to distinguish between change and rate of
change. As a bullet travels through the air, the distance and time it
travels are continually increasing; at the instant it strikes a person,
however, what is important is its speed, or rate of change of distance
compared to time, and not the distance and time it has traveled. If
that speed is one mile per hour, the bullet will drop harmlessly to
the ground at the person’s feet. If it is one thousand miles per hour,
the person will drop to the ground safe from future harm. Obvi-
ously, the rates of change of varying quantities are at least as signifi-
cant as the fact that they are changing.

Among rates of change of variables we must distinguish two kinds:
average and instantaneous. If a person motors from New York to
Philadelphia, a distance of ninety miles, in three hours, his average
speed, that is, his average rate of change of distance compared to
time, is 3o miles per hour. This number, however, obviously does
not necessarily represent his speed at any particular instant of time
during the journey, say at § o'clock. Suppose now that at this in-
stant, exactly g o’clock, the traveler looks at the speedometer of his
automobile and notices that it reads 35 miles per hour. This quan-
tity is an instantaneous speed; that is, it is his rate of change of dis-
tance compared to time at g o’clock, but not necessarily the speed
at any instant before or after. We might argue that there is no such
thing as speed at an instant because no time elapses at an instant and
hence there can be no motion. At present, we shall simply appeal
to our physical experience to support the assertion that a person
traveling in an automobile is moving at a definite speed at each
instant. A collision with a tree at any one of these instants would
surely convince the doubting reader.

The need to deal with instantaneous speed arises primarily when
an object moves with varying speeds; otherwise the concept of aver-
age speed suffices. Now varying speeds are precisely what the seven-
teenth-century scientists encountered. Kepler’'s second law, for ex-
ample, states that a planet moves, not at a constant speed as the
Greeks and other pre-Renaissance scientists had believed, but at a
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continually varying speed. Similarly, according to Galileo, bodies
rising or falling near the surface of the Earth travel at continually
varying speeds. Pendulum and projectile motions, which were in-
tensively studied at that time, also involve varying speeds. To treat
such motions the scientists lacked a clear understanding of instan-
taneous speeds and, in addition, some method of calculating them.

1t should be understood that we cannot obtain an instantaneous
speed as we obtain an average speed, for at an instant zero distance
is traversed and zero time elapses and to divide zero by zero is
meaningless. A little thought about the matter will convince the
reader that only an unusual solution of the problem of defining and
calculating instantaneous speed could succeed. To this problem, Fer-
mat, Newton, and Leibniz applied their genius.

Let us consider first a simplified description of their mathematical
approach. We have already agreed that if an automobile leaves New
York City at 2 p.M. and arrives in Philadelphia at 5 p.M., its average
speed for the trip is the distance it travels, go miles, divided by the
time it takes to travel this distance, § hours; that is, the average speed
is 30 miles per hour. What can we say about the speed at g o’clock?
It is clear that although the average speed is go miles per hour, the
speed at § o’clock may have been 40 miles per hour or almost any
other number. We can attempt to answer the question by consider-
ing the average speed for a brief period of time around g o’clock.
Thus if the automobile travels .6 miles in the minute following
g o'clock the average speed for this minute is .6 miles divided by
1 minute or g6 miles per hour. Is this the average speed at g o’clock?

Although one minute is a fairly short interval of time, it is still
possible that the average speed for this minute may differ consider
ably from the speed at exactly § o’clock because the automobile
could increase or decrease its speed during this minute. Let us then
decrease the length of the time interval around g o’clock over which
the average speed is computed. Now we can compute the average
speed for 1 second, or %4, of a second, or ¥4 of a second, and so on.
The shorter the interval for which the average speed is computed,
the more closely the average speed in that interval should approxi-
mate the speed at g o’clock.

Suppose that the average speeds computed over smaller and
smaller intervals of time turn out to be 86, 3514, 35%4, 35%%, and so
on, as we get closer to g o’clock. Because the average speeds for
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smaller and smaller time intervals around g o’clock should be closer
and closer estimates of the speed at § o'clock, we define the instan-
taneous speed at § o’clock to be the number approached by the aver-
age speeds as the time intervals approach o. In the case of the aver-
age speeds—36, 35V4%, 354, $5%%, and so on—these numbers are pre-
sumably approaching g5 and so we would take g5 to be the instan-
taneous speed at § o’clock. We should notice that the instantaneous
speed is not defined as the quotient of distance divided by time.
Rather we have introduced the idea of taking a number that is
approached by average speeds.

We can now consider a more precise description of the method
of obtaining instantaneous speed. Let us take the actual formula
which relates the distance a dropped body falls to the time it falls
and let us calculate the instantaneous speed of a ball exactly three
seconds after it is dropped. According to Galileo the relation be-
tween distance fallen in feet and time elapsed in seconds is

(1) d = 1682

The distance fallen by the end of the third second, indicated by ds,
is therefore obtained by substituting g for ¢ in this formula. That is,

ds = 16-3% = 144.

Now instead of calculating average speeds for various intervals of
time around the end of the third second, as we did for the automo-
bile’s speed around g o’clock, we can work more efficiently as foliows.

Let h represent any interval of time. Then g + /4 represents a new
interval of time larger than g seconds by the amount 4. In order to
find how far the ball falls in § + & seconds, we substitute this time
value in formula (1). We know that the new distance will not be
144 but a different value of d. Let us call it ds + & where & is the
extra distance traveled during the additional k seconds. Then

ds + k = 16(3 + h)%
By multiplying (g + &) by itself we obtain
ds + k = 16(9 + 6h + 7).
We now multiply each term in the parentheses by 16. The result is

(2) ds + k = 144 + 96k + 16h%
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At the end of g seconds the distance fallen is

(8) ds = 144.

To get k, the change in distance during the % seconds, we subtract
equation (g) from equation (2). This operation gives

(@) k = g6h + 162

Now, just as the average speed of the automobile was obtained by
dividing go miles by g hours, so we divide %, the distance traveled,
by k, the number of seconds it takes to travel that distance, to obtain
the average speed during the £ seconds. If, then, we divide both sides
of formula (4) by 2 we obtain

(5) k/h = g6 + 16h.

We see from formula (3) that the average speed, k/A, in the interval
of h seconds after the third second is a function of &, the function
being g6 + 16A. As k becomes smaller, k/h represents average speed
over a smaller and smaller interval of time measured from the end
of the third second. We agreed above to take the number approached
by these average speeds as the instantaneous speed at the end of the
third second. Hence we want the value approached by &/h as h ap-
proaches o. As h approaches o, 16k approaches o; and, as we can see
from the right-hand side of formula (3), £/h approaches g6 in value.
Hence the instantaneous speed at the end of the third second is
96 ft./sec. This is the speed any body dropped in a vacuum attains
after three seconds. (

The reader should notice that to determine the number g6 as the
instantaneous speed, we observe what happens on the right side of
formula (5) as 2 approaches o. Our reasoning was that the smaller /
becomes, the closer 96 + 164 approaches g6. The thought process is
not the same as that of substituting o for & despite the fact that the
same result could be obtained by the substitution in the case of this
stmple function.

Let us see why the thought process is not the same. When 4 is o,
k is.0 because % is the distance traveled by the ball during the time A,
Hence when % is 0, k/h = 0/0 and this is a meaningless expression.
Thus it is incorrect to speak of obtaining the speed at the end of the
third second by substituting o for % in the expression for k/h. How-
ever, to find the number approached by the average speeds as the
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intervals of time over which the average speeds are computed ap-
proach o is logically sound and this is just the idea introduced to get
around the difficulty in the concept of instantaneous speed. There is
no difficulty, of course, about computing the average speeds because
they are all for non-zero intervals of time.

We now have a concept of instantaneous speed. It is the number
approached by average speeds as the intervals of time over which
the average speeds are computed approach zero. Equally important,
we have a method for calculating instantaneous speed by working
from the formula relating distance and time. Incidentally, we should
notice that if we had calculated the speed at the end of ¢ seconds in-
stead of g, our result would have been that the speed v equals g2¢.
Thus we can obtain a formula for the speed at any instant &.

The process we have just examined is characteristic of mathe-
matics. In order to treat the concept of instantaneous speed the
mathematician has idealized space and time so that he can speak of
something existing at an instant of time and at some point in space.
He thereby obtains speed at an instant. The layman finds his imagi-
nation and intuition strained by the notions of instant, point, and
speed at an instant and he might prefer to speak of speed during
some very small interval of time. Yet mathematics produces through
its idealization not merely a concept but a formula for speed at an
instant that is precise and more readily applied than is the notion
of average speed during some sufficiently small interval. The imag-
ination may be strained but the intellect is aided. This is the paradox
of mathematics, which we have already encountered in other guises,
that by introducing seeming difficulties it simplifies and renders easy
a truly complex problem.

The method of defining and calculating instantaneous speed is
actually more widely applicable than has hitherto been apparent.
Nothing in the mathematics of it requires that d represent distance
and ¢ represent time. These variables may have any physical mean-
ing whatsoever, and we can calculate the rate of change of one vari-
able with respect to the other at a value of the second one by the
same mathematical procedure we used to calculate the rate of change
of distance compared to time at an instant. For example, if d repre-
sents speed and ¢ time, we can calculate the rate of change of speed
compared to time at an instant; this instantaneous rate of change
of speed is instantaneous acceleration. As another example, the pres-
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sure in the atmosphere varies with height above the surface of the
Earth; for this function we can calculate the rate of change of pres-
sure compared to height at any given height. Or, if the variable d
represents price level of commodities and ¢ represents time, then we
can compute the rate of change of price compared to time at some
instant. Thus our method enables us to define and calculate thou-
sands of significant and useful rates of change of one variable with
respect to another at a value of the second variable. Incidentally, all
such rates are referred to as instantaneous rates, despite the fact that
time may not be one of the variables involved, because the original
calculus problems of speed and acceleration did involve time and
were concerned with rates at an instant of time. The calculus may
now be defined as the subject that treats the concept of instantaneous
rate of change of one variable with respect to another and the vari-
ous applications of this concept.

The instantaneous rate of change of one variable with respect to
another is usually indicated by a special symbol. Thus if the two
variables are y and x, one symbol commonly used is D,y, which is
read the derivative of y with respect to x. (Another common but mis-
leading symbol is dy/dx.) Either symbol is an excellen: example of
the conciseness of mathematical language. In less than the space of a
word the symbol describes the result of the entire operation of find-
ing the instantaneous rate of change of some variable y compared to
another related variable x. We know now how much is comprised in
that reference. Evidently the use of such a symbol is quite a step
beyond the use of the letter x to represent an unknown. Advanced
mathematics differs from elementary mathematics partly in this very
effective use of symbols for complex concepts.

In the application of the concept of instantaneous rate of change
mentioned thus far we started with the formula relating two varia-
bles and then found the rate of change. Suppose we were given the
rate of change of one variable with respect to another, would there
be any value in the reverse process of finding the formula relating
the two variables? Of course the value of reversing the process of
finding the rate of change depends on knowing some important rates
of change to start with. Fortunately, this information can be readily
obtained in many natural and man-made phenomena. From this we
proceed to the formula and to the solution of many problems. Let
us examine one actual case.
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Suppose we were interested in finding the formula which relates
the two variables, namely, the distance a body falls and the time the
body takes to fall this distance. It is a logical consequence of New-
ton’s laws, as shown in the preceding chapter, that the acceleration
of a falling body is constant. That is, the rate of change of speed
compared to time is the same at each instant of time. Simple ex-
periments such as were made by Galileo show that the value of this
constant is g2 ft./sec.?. In symbols, if a stands for acceleration,

(6) a= y2.

All bodies in the air above the Earth, the airplane flying over the
Rockies, the bullet shot from a gun, and the ball thrown up into the
air, possess this downward acceleration.

Now a is the instantaneous rate of change of speed compared to
time; hence we can think of it as coming from a formula relating
speed v and time ¢. If we could find this formula it would give the
expression for the speed in terms of the time. We can obtain it by
reversing the process of finding the rate of change. The reader may
accept the fact that the formula relating speed and time is

(7) v = 324,

or he can check it by finding the rate of change of v with respect to ¢
and see that formula (6) results from his check. But formula (%) is
not the answer to our problem, for this gives us the speed at each
instant the body falls in terms of the time it has been falling, whereas
we are seeking the relation between distance and time. However, the
speed is the rate of change of distance compared to time. Therefore,
in order to find the distance the body falls in ¢ seconds we must find
a new formula for which formula (%) represents the instantaneous
rate of change. Again by reversing the process of finding a rate of
change we get the formula relating d, the distance the body falls, to
¢, the number of seconds. The result is

(8) d = 1662

The reader can confirm this result by showing that the rate of change
of d compared to ¢ is formula (%). Thus by twice reversing the process
of finding instantaneous rates we can find the formula relating the
distance and time a dropped body travels.

One more illustration of a class of problems in which the rate of
change is the most readily obtained information may suffice to indi-
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cate the importance of the process of finding the formula from the
rate of change. Newton’s second law of motion, a law used as a basis
for the most fundamental investigations in physics, is a statement
about a rate of change. It says that the force acting on a body equals
the mass of the body multiplied by the acceleration of the body’s
motion. When the force is known, the law becomes a statement
about acceleration or the rate of change of speed compared to time.
Then by proceeding somewhat as we did above in going from for-
mula (6) to formula (8) we can find the formula relating the distance
and time in the situation where the force applies. Very often a for-
mula obtained by reversing a rate of change could not have been
obtained in any other way.

Expressions involving instantaneous rates of change are usually
written in the form of equations, as (6) and (%) are written, and are
called differential equations. A differential equation expresses some
fact about the instantaneous rate of change of one variable with re-
spect to another. The process of finding the formula that relates these
variables by working from the differential equation is called solving
that equation. It was by solving a famous differential equation that
Newton was able to deduce Kepler's laws so readily. Because differ-
ential equations have proved to be the most effective means of for-
mulating and developing whole branches of science, nature and God
are often credited with ‘speaking’ in terms of such equations.

Were we concerned with the practical uses of the calculus it would
be profitable to see how reversal of the process of finding an instan-
taneous rate of change could be applied to finding the lengths of
curves, areas bounded by curves, volumes bounded by surfaces, and
numerous other quantities not otherwise obtainable. Perhaps we
should see, at least, how the calculus is involved in such applications.

As a simple illustration let us consider the area in figure yo. We
may think of this area as being swept out by a moving vertical line
segment AB which starts at P (with zero length) and moves to the
right. For any position of 4B the area swept out is the shaded area
of the figure. Now as AB moves to the right, the area swept out in-
creases at a rate that is equal to the length of AB. Since AB changes
in length from one position to another, the area swept out varies
from point to point and the concept of instantaneous rate of change
enters the picture. It would take us too far into the purely technical
aspects of the calculus to complete the story of how the area of this
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figure and other areas can actually be found. The recognition of the
relationship between the general concept of rate of change, on the
one hand, and the determination of lengths, areas, and volumes, on
the other, is the greatest single discovery made by Newton and Leib-
niz in the calculus.

While the efficient production of tin cans is sufficient motivation
in our civilization for the study of a mathematical idea, the calculus,
like other branches of mathematics, warrants attention because it has
played larger roles in the creation of modern civilization and culture.

B/

e

Figure 5o. Area generated by a moving straight-line segment of variable length
Of course, the use of calculus techniques in the derivation of scien-
tific laws has already been described. Moreover, Newton'’s success in
obtaining universal laws governing motion stimulated the scientists
to seek such laws in other branches of physics. As a consequence, basic
laws each embracing a large class of natural phenomena were found
in such fields as electricity, light, heat, and sound. But we have not
yet touched upon the most significant development that followed the
creation of the calculus.

Scientists, like all men, are not readily satisfied. Once they obtain
some success, they immediately desire a greater one. The eighteenth-~
century scientists, with courage high because they possessed the pow-
erful weapon of the calculus, with appetites whetted by initial suc-
cesses, and with tastes for scientific progress cultivated by their ex-
perience, dared to speculate about whether even the universal laws
of the several branches of physics could all be deduced from one
single law which perhaps underlies the design of the entire universe.
At the very least, they hoped to unify several branches of science
under one general mathematical law from which the separate laws
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of the several branches could then be deduced. Daring and ability
won the day. The mathematicians and scientists did discover an en-
tirely new principle which has not only guided the course of vast
scientific developments but has been accepted as a basic doctrine on
the design of the universe. The connection between the calculus and
cosmic plan needs some elucidation.

Suppose a ball is thrown straight up into the air and we wish to
find the maximum height it reaches above the ground. By means of
the calculus this question is readily answered. Suppose, for example,
that the height % of the ball above the ground is given by the formula

(9) h = 128f — 1682,

wherein ¢ is the number of seconds from the instant the ball is thrown
up. Since the ball rises when it first starts out, this means that 4 in-
creases with ¢. The speed of the ball, however, decreases because
gravitation opposes the upward velocity. The ball will continue to
rise until its speed is zero. This must occur at the highest point of
its flight or else the ball would continue to rise. This argument sug-
gests that if we find the instant at which the speed is zero we will
know at least the instant at which the ball is at the maximum height.
By applying the process for finding the instantaneous rate of change
of h with respect to ¢ to formula (g) we should find that the speed is
given by the formula

(10) v =128 — g2t

We agreed that the speed v equals zero at the instant when the ball
is highest. Hence we let v = o in formula (10) and notice that the
time ¢ at which the ball is highest satisfies the equation

o = 128 — gat.

Evidently ¢ = 4 satisfies this equation and so the ball is highest 4
seconds after it leaves the ground. How high is the ball at that time?
Formula (9) gives the height above the ground at any instant of time.
We substitute 4 for ¢ in this formula and find that

h = 128-4 — 16-4% = 256.

Thus the maximum height attained by the ball is 256 feet above the
ground. The point of this illustration is that the calculus enables us
to find the maximum value of a variable, % in the example above,
through the concept of instantaneous rate of change. The same pro-
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cedure when applied to a variable that has a minimum value would
enable us to find that minimum.

By this time in the eighteenth century, scientists had observed that
in numerous phenomena nature behaves so that some quantity is
either 2 maximum or a minimum. For example, a light ray that goes
from a point 4 to a mirror and then to a point B (see fig. 16) could
conceivably take many paths. But, as the Greeks discovered, the ray
takes the shortest path. Since light travels at a constant speed in a

A

AIR

WATER

B
Figure 51. Refracted light takes the path requiring least time

uniform atmosphere, the shortest path is also the path that requires
the least time. In this phenomenon, therefore, nature behaves so that
both the distance and time involved are a minimum.

When light travels from one medium into another, as from air to
water, not only does its velocity change from a quantity c¢i, say, to a
quantity c, but the direction of the light ray changes (fig. 51). Again
the light ray could take many paths in going from 4 in the first
medium to B in the second. Both Willebrord Snell, a professor of
mathematics at the University of Leiden, and Descartes showed, how-
ever, that the path the light ray does take is the one for which ¢,
divided by c¢; equals sine 1 divided by sine 2. Fermat then showed
that this path is also the one requiring the least time.

Light also follows the path requiring the least time when passing
through a medium of variable characteristics such as the atmosphere
above the Earth. This behavior of light can be attested to almost
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daily. The atmosphere near the surface of the Earth is denser than
it is far from the surface of the Earth. But the speed of a light ray is
slower in a dense atmosphere than in a rare one. Hence light coming
from the sun to us stays in the rarer atmosphere as long as possible,
presumably to take advantage of the higher speed that is possible
there. The resulting curved path of the light rays permits us to see
the sun after sunset, that is, when the sun is actually below the geo-
metrical horizon (fig. 52).

OBSERVER HORIZON LINE FOR OBSERVER

Figure 52. Light passing through a variable atmosphere takes the path requiring
least time

On the basis of such evidence Fermat affirmed his Principle of
Least Time, which says that a ray of light traveling from one point
to another will always take the path requiring the least time. Since
the true path is the one for which the time is a2 minimum and since
the calculus can be applied to determine the value of one variable
that minimizes or maximizes a related variable, Fermat’s principle
tells us, in effect, how the calculus may be used to determine the
paths of light rays. Fermat’s principle, however, applies only to the
behavior of light rays. What about other phenomena?

Other instances wherein nature obeys a minimum principle were
sought and soon found. A balloon made of uniform rubber takes a
spherical shape when blown up. So does a soap bubble. It is a math-
ematical theorem that of all surfaces containing a given volume the
sphere has the least surface area. (A Greek of the classical period
would have given his life’s blood to be able to prove this fact about
his precious sphere.) The balloon and bubble, therefore, assume a
shape that requires the least surface area for the volume of air blown
into them. Why should they choose to obey this mathematical the-
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orem? By assuming a spherical shape the rubber and the soap film
are spread over the least area and are therefore stretched the least.
Apparently nature, like human beings, extends herself as little as
possible.

Could all these examples be included in one broad principle?
About the middle of the eighteenth century a famous physicist,
Pierre L. M. de Maupertuis, announced the Principle of Least Ac-
tion. This Principle, which Maupertuis discovered while working
with the theory of light, asserts that nature behaves so as to make as
small as possible a certain complex mathematical quantity known
technically as action and amounting to the product of mass, velocity,
and space traversed. By applying the calculus to the formula for
action, Newton’s first two laws of motion, as well as other laws of
mechanics and light, can be deduced. Hence bodies moving in ac-
cordance with Newton’s laws, the planets for example, can be said
to be obeying a minimum principle. Moreover, Maupertuis had suc-
ceeded in bringing the laws of mechanics and light under one min-
imum principle.

Maupertuis sought and advocated his principle for theological
reasons. He believed that the laws of behavior of matter must reveal
the perfection worthy of God’s creation. The Principle of Least Ac-
tion satisfied this criterion because it showed that nature was eco-
nomical. He therefore not only proclaimed it as a universal law of
nature but also as the first scientific proof of the existence of God,
for it was ‘so wise a principle as to be worthy only of the Supreme
Being.’

The great eighteenth-century Swiss mathematician, Leonhard
Euler, like Maupertuis, believed that the existence of a minimum
principle such as Least Action was no accident, and so he defended
all of Maupertuis’ claims for it. The principle was evidence of God’s
conscious design. Apparently, the God who was formerly merely the
geometer of the Greek and Renaissance scientists was now being
educated. He was shortly to become not merely a geometer but a
rounded mathematician, proficient in all its branches.

As a matter of fact, Fermat, Maupertuis, and Euler were wrong in
supposing that nature always behaves so as to make some function
least. There are situations, for example, when a light ray takes a path
requiring the most time compared to the time required for other
possible paths. Hence the correct formulation of the principle these
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men sought is that nature behaves so that some function is either a
maximum or a minimum. Maupertuis should not have said that
nature is economical. He could have said, instead, that nature often
runs to extremes.

Yet, although Maupertuis and his colleagues may have been mis-
taken about a detail or two, their nineteenth- and twentieth-century
successors have been confident that these men were on the right track.
Stripped of theological associations, a maximum and minimum prin-
ciple now dominates physical science. One of the outstanding physi-
cists of the last century, Sir William Hamilton, showed that nearly
all gravitational, optical, dynamical, and electrical laws can be ob-
tained by maximizing or minimizing a function created by him and
known technically as the time integral of kinetic potential. Hamil-
ton’s function is valued partly because so many physical laws are
encompassed by it and also because these laws must be deduced by
applying a maximizing or minimizing process. Moreover, the out-
standing mathematical physicist of this century, Albert Einstein,
achieved his greatest success within his greatest creation, the theory
of relativity, by showing that the natural path of bodies in space-time
is one that maximizes a function called the interval. The importance
of this statement lies in the fact that it accounts for the observed
paths of the planets. The goal of embracing all phenomena in one
principle, namely that the actual behavior of nature minimizes or
maximizes some very general mathematical quantity, is béing actively
pursued today. Einstein himself is still engaged in this task of com-
pressing all electrical and mechanical knowledge into one mathemat-
ical sentence from which the laws of nature would be deduced by a
minimizing or maximizing process.

We see, then, that the emphasis of scientists on a maximum-min-
imum principle has not diminished. The only change is that whereas
such principles were formerly attributed to the providence of God,
they are now accepted and welcomed because they are aesthetically
appealing and scientifically helpful. Even so, such famous twentieth-
century scientists as Eddington and Jeans have continued to look
upon God as the First Cause, the ultimate raison d’étre.

Though the great mathematicians and scientists lost no time in
applying the calculus to the architecture of the universe, they were
balked for generations in their attempts to erect an adequate logical
basis for the subject. Just as the gap between the conception of a
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horseless carriage and the modern automobile was bridged by a hun-
dred major inventions and several hundred minor ones, so the gap
between the calculus of Newton and Leibniz and what is now re-
garded as a satisfactory account of the subject was bridged by the
work of hundreds of mathematicians, great and small. It tock about
a hundred and fifty years of work to produce a logical presentation
of the calculus.

The major difficulty arises in the very step that gives the instan-
taneous speed. We may recall that from the formula d = 16/% we
obtained the expression

for the average speed during the time interval of % seconds. The
instantancous speed was then taken to be the number approached
by this expression as i approaches zero, or the limit as it is now called
in the calculus. It may seem obvious to the reader that the number
approached is g6; perhaps this fact is evident in this simple example
but the concept of a limit is, nevertheless, a subtle and elusive one.
Let us examine some of the difficulties involved.

The numbers of the sequence o, %, 3%, %4, %2 . . . are increas-
ing and approach 1 but evidently they do not get close to 1 because
no term of this sequence is even as much as %. If the values of k/h
as k approaches zero made up this sequence, what would the limit or
the number approached by k/k be? Evidently something more must
be said about how the approach is made. It might be said that the
sequence of values must come very close to the limit. But the word
close is vague. The planet Mars comes close to the Earth when it is
5o million miles away. On the other hand, a bullet comes close to a
person if it gets within a few inches of him.

The difficulty with which the founders of the calculus struggled
was precisely this matter of giving some satisfactory definition of
what they meant by instantaneous speed or the number approached
by the quantity k/h. The attempts of some of the early seventeenth-
century workers on the calculus to understand and justify their frag-
mentary contributions to the subject are ludicrous by modem stand-
ards. Despite the long tradition of rigorous proof in mathematics
some mathematicians were ready to abandon the standard just be-
cause they knew they had their fingers on a valuable idea which they
wished to advance but could not justify. Rigor, said Bonaventura
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Cavalieri, a pupil of Galileo and a professor at Bologna, is the con-
cern of philosophy and not of geometry. Pascal argued that the heart
intervenes to assure us of the correctness of some of the mathematical
steps. The proper ‘finesse’ rather than logic is what is needed to do
the correct thing, just as the appreciation of religious grace is above
reason.

Though Newton and Leibniz made the most significant advances
in the technique of the calculus, they did not contribute much to
the rigorous establishment of the subject. No one can read the details
of their writings on the calculus without being amazed by the variety
of ways in which they stabbed at, around, and about the correct ver-
sion of the limit concept without actually striking it. Several times
they changed their approaches and contradicted their earlier state-
ments. Neither man succeeded in doing more with the limit concept
proper than confusing himself, his contemporaries, and even his suc-
cessors. At one place in his Principles, Newton does state the correct
version of the notion of instantaneous rate of change but apparently
he did not recognize this fact, for in later writings he gave poorer
explanations of the logic of his procedure. Leibniz did attempt a
justification of his work on rates by philosophical arguments about
the nature of the quantities 2 and & which appear in the ratio &/h
when /£ is allowed to approach zero; yet he believed that, metaphys-
ical considerations aside, the calculus was only approximately correct
but useful because the errors involved were too small to matter prac-
tically. In his mathematical exposition of the calculus, Leibniz gives
only rules and no proofs. To describe the values of £ and 2 which
make up the number approached by k/k as h approaches zero, he
speaks of the & as being the difference in two values of the time ¢ that
are infinitely near each other; similarly £ is the difference in two such
values of the distance d. In some of his writings he refers to the limit-
ing values of k£ and % as quantities that are infinitely small, or vanish-
ing quantities, or quantities that are incipient as opposed to the usual
existing quantities. Newton used the phrase ‘prime and ultimate
ratio’ for the limit of 2/h. But all such phrases do no more than gloss
over the difficulty.involved.

Because of the lack of rigor in the early works on the calculus, con-
flicts and debates on the soundness of the whole subject were pro-
longed. The mathematician, Michel Rolle, a contemporary of New-
ton, taught that the calculus was a collection of ingenious fallacies.
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Shortly after Newton’s death a good mathematician, Colin Maclaurin,
decided that he would rigorize the calculus. His book, published in
1742, was undoubtedly profound but also unreadable. Many other
eighteenth-century expositions of the calculus were written for the
precise purpose of supplying the logic. Their accomplishments may
be epitomized by Voltaire’s description of the status of the calculus
as ‘the art of numbering and measuring exactly a Thing whose Exist-
ence cannot be conceived.” Two of the greatest mathematicians of all
times, Joseph Louis Lagrange and Leonhard Euler, both of whom
did their best work about a hundred years after that of Newton and
Leibniz, still believed that the calculus was unsound but gave correct
results only because errors were offsetting each other. Near the end
of the eighteenth century, D’Alembert advised students to keep on
with their study of the subject; faith would eventually come to them.
It was a very fortunate circumstance that mathematics and science
were closely linked in the Newtonian era and that physical reasoning
could guide the mathematicians and keep them on the right track.
Because the results they obtained were useful and sound in applica-
tion, they maintained confidence in their methods and the courage
to proceed farther. In fact, the calculus procedures worked so well
and to such great advantage that at times mathematicians willingly
closed their minds to the problem of rigor.

We know now that intuition and physical arguments rather than
logic guided Newton and Leibniz along the proper paths. Incom-
pleteness in the thinking of the creators of major ideas is almost to
be expected. Pioneers in intellectual adventures make their great
strides along paths briefly illuminated by flashes of brilliance. Were
they to delay for smaller, time-consuming observations, their prog-
ress might be limited to the dainty, mincing steps of near-sighted
academicians. Nevertheless, the history of the calculus is most reveal-
ing because it shows how progress is made in mathematics. The pop-
ular conception of a mathematician who reasons perfectly and di-
rectly to a conclusion is nowhere more sharply at variance with
history than in the case of the creators of the calculus. Of course,
many mathematical proofs have had to be corrected because some
error was made unconsciously. It is a professional secret which should
not be allowed to go farther than the reader that even Fuclid made
mistakes which were not discovered until the latter part of the nine-
teenth century. In the case of the calculus, however, we find an ex-
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wnsive body of mathematics applied to the most profound problems
of science and producing the weightiest laws of the eighteenth cen-
tury, while all the time the mathematicians, scientists, and other in-
tellectuals were aware of the unsatisfactory foundations of the subject
and were even dubious about its soundness. It should also be com-
forting to our egos to remember that almost all the best machemati-
cians of two centuries concentrated hard on the problem of rigorizing
the calculus and failed miserably.

Fortunately for mathematics and the world this comedy of errors
ended happily. The brilliant French mathematician, Augustin-Louis
Cauchy, succeeded in formulating the limit concept correctly and in
proving theorems about limits that were needed to justify the tech-
niques. Cauchy published a definitive work, Cours d’Analyse, in
1821. We should be wrong to infer that mathematicians thereupon
cast off the nonsense that had been written for a hundred and fifty
years before that date and adopted Cauchy’s ideas. The calculus text-
book most widely used in the United States during the last fifty years
and the one that is still the most popular might well have been writ-
ten in 1%700.

Contrary to common belief, the calculus is not the height of the
so-called ‘higher mathematics.’ It is, in fact, only the beginning. Soon
after it was created it became the cornerstone of analysis, a branch of
mathematics, far vaster than algebra and geometry, that has served,
guided, and led science so remarkably. Subjects such as ordinary and
partial differential equations, infinite series, the calculus of varia-
tions, differential geometry, the calculus of functions of a complex
variable, and potential theory are only some of the domains of analy-
sis. With such tools the scientists continued their search for the math-
ematical laws of nature and strengthened their mastery of vast por-
tions of it. Some of these achievements await our inspection.

While these branches of mathematics were being created a new
culture was being fashioned on the basis of the contributions of the
sixteenth- and seventeenth-century mathematicians. Abandoning the
dried-up stalks of medieval knowledge which had previously supplied
them with sustenance, science, philosophy, religion, literature, art,
and aesthetics sought nurture from the fruitful mathematical contri-
butions to a new interpretation of the cosmos. The directions pur-
sued by these revivified branches of our culture will be our concern
in the next few chapters.



XVI

The Newtonian Influence: Science and
Philosophy

Expatiate free o’er all this scene of Man;
A mighty maze! but not without a plan;

ALEXANDER POPE

A seventeenth-century poll to select the most influential ‘man’ of
that age would surely have been won by the devil. According to the
science of demonology developed and preached by the theologians,
the devil and his assistant evil spirits caused wars, famines, plagues,
and storms. They amused themselves by frightening children and
keeping churned cream from turning into butter. Also aiding the
devil in his work were witches, ‘anointed’ human beings who de-
rived their powers from him. Witches could infect people, transform
themselves into wolves and devour their neighbors’ cattle, and even
have carnal relations with the devil himself. In idle moments they
rode broomsticks up and down chimneys or through the air.

The evil perpetrated by the devil and his collaborators, in spite
of God’s omnipotence, was so monstrous that the political and spir-
itual representatives of God could find no mission more weighty or
more sacred than the elimination of these enemies of mankind.
Among these self-appointed protagonists of society were such con-
firmed believers in witchcraft as King James 1 of England, Luther,
Calvin, some of the popes, John Wesley, and, in our own New Eng-
land, Cotton Mather. On the basis of the most flimsy evidence old
men, young men, women, and children were accused of being witches.
In order to be certain that no suspects were overlooked, anonymous
accusations were solicited even during church services. Boxes were
passed around regularly into which worshippers could insert names.
The accused were imprisoned, tortured, and urged to confess.

234
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Whether or not the accused confessed, torture went on until death,
for failure to confess was interpreted as obstinacy, while confession
obviously called for punishment. To ease the infinitestimal con-
sciences of the judges some of those who did not confess were
awarded certificates of innocence—posthumously.

With almost unbelievably firm adherence to doctrines that are
now regarded as fantastic, secular judges and churchmen coldly con-
demned witches and sorcerers to death. The hold of the witch men-
ace on seventeenth-century Europe may be estimated from one of
the ‘reform’ measures. Pope Gregory xv decreed prison rather than
death for those witches who, by their magic powers, had produced
divorces, sickness, or impotence, or had harmed animals or crops.

Although the pursuit of witches was responsible for the death of
many thousands of innocent people in the seventeenth century, it
was by no means the only black aspect of life in that violent age.
People lived in continual terror of what they were told awaited them
after death. Priests and ministers affirmed that nearly everyone went
to hell after death, and described in greatest detail the hideous, un-
bearable tortures that awaited the eternally damned. Boiling brim-
stone and intense flames burned victims who, nevertheless, were not
consumed but continued to suffer these unabating tortures. God was
presented not as the savior but as the scourge of mankind, the power
who had fashioned hell and the tortures therein and who consigned
people to it, confining His affection to only a small section of His
flock. Christians were urged to spend their time meditating upon
eternal damnation in order to prepare themselves for life after death.
The credulous, unthinking people for whom religion was the only
outlet, next to slavery, accepted this account of their fate as literally
true. No wonder men felt impelled to ‘justify the ways of God!’

Religious freedom was a rarity during the seventeenth century;
but even worse, wars were fought regularly to stamp out heterodox
opinion within the state and in neighboring states. Total uniformity
of belief was insisted upon to the point that any independent thought
was eliminated. The Spanish, Roman, and Mexican Inquisitions, the
Saint Bartholemew’s Day massacre in France, the Piedmont massacre
in Italy, and the Thirty Years War in Germany were just a few of
the ‘inspired’ efforts to educate mankind. Heresy, which included any
act displeasing to the particular church dominant in any one country
or even idle words against the pope in Catholic states, was immedi-
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ately and ruthlessly stamped out. Even here in America, Quakers
were hanged just for daring to come to Puritan Boston. Not only
was there almost no freedom of religion, but religion held men in
fear: fear of punishment, fear of damnation, fear of the devil, fear of
God, and fear of torture after death.

In such a reactionary atmosphere it might be expected that free-
dom of the press would be as little known as freedom of religion.
From 1543 on it was a penal offense in Catholic states to print, sell,
own, convey, or import any literature not expressly sanctioned by the
Inquisition. An Index of Prohibited Books listed those forbidden to
the faithful. No sharper dagger for the assassination of letters was
ever devised. Even where there was a degree of religious freedom,
as in Prussia under Frederick the Great, freedom of the press was
considered dangerous to the ruling class. While Frederick did agree
that ‘every man must go to heaven his own way,” he stoutly main-
tained that man should have nothing to say about the government
ruling his life on Earth. Hence censorship of books and articles was
rigidly imposed. Governments ostensibly urged their citizens to search
for the truth but punished them for finding it. As a result of the
restrictions on the diffusion of knowledge the ignorance of the masses
was as profound as it was widespread, and the traditionally learned
class still ‘solved’ theological problems and dabbled in Aristotle.

Democracy itself was confined to an Aristotelian concept in specu-
lative philosophy rather than proclaimed as a goal to be achieved in
this world. The servile, chattel-like common man had not yet learned
that he should challenge the divine right of his royal masters. In ad-
dition, the masses enjoyed no civil rights. People were thrown into
prison without specific charges being lodged against them and
waited years for trial. The most trivial offenses, such as stealing a
sheep or a small sum of money, were punished by death, and prison
for indebtedness was usual. The favorite sport of ‘ladies and gentle-
men’ of quality in England and elsewhere was to watch the torture
and execution of criminals by the cruelest methods. To be drawn
and quartered was not merely a figure of speech in those days.

Fortunately, these manifestations of intellectual, social, and moral
depravity were the death throes of a passing culture. By the seven-
teenth century the medieval civilization had become completely dis-
rupted. Its place in the Western world was to be taken by a more
enlightened civilization which was just being fashioned. And the
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manner in which mathematics and science contributed to the mold-
ing of this new civilization is certainly as worthy of examination as
the manner in which they brought about such modern ‘miracles’ as
radio and television.

The religious and social upheavals of the Renaissance and the
rapid accurmnulation of knowledge from geographical explorations
and mathematical and scientific research produced, at first, only in-
tellectual confusion. Throughout this period, however, a small
group of scientists and mathematicians, beginning with Copernicus,
and including Kepler, Galileo, Descartes, Fermat, Huygens, Newton,
and Leibniz, had been working steadily. While the ultimate effect
of their work was to replace medieval decadence by a new cultural
order, the goal of these men, as they themselves envisioned it, was a
relatively limited one. In accordance with Galileo’s new conception
of the task of science and in accordance with the explicit statement
by Newton in his Mathematical Principles of Natural Philosophy, it
called for discovering the mathematical relations that hold for the
physical universe.

Toward this end, the laws of motion and gravitation were the
major contributions of Newton. These laws in themselves were found
to embrace an amazing variety of phenomena. The laws of Kepler,
based theretofore on observation, were recognized as immediate de-
ductions from Newton’s mathematical laws. When Newton and
others following him found that light could be successfully studied
as a motion of corpuscles and sound as a motion of air molecules,
the Newtonian laws proved effective in these studies, too. Many
other fields of science began to yield to mathematical formulation.
Quantitative laws were discovered in the fields of electricity and
heat, for the forces acting in liquids and gases, and for many chem-
ical phenomena. Though the victories were largely in the fields of
astronomy and physics and, to a lesser extent, in chemistry, their
significance was heightened by the promise of things to come.

The improvement of the telescope and microscope, through math-
ematical and physical studies of light, quite literally opened up a
new world to biologists. The success of the quantitative approach,
along with analysis in terms of force and motion, suggested to the
physiologists and psychologists that they look for explanations of
their problems in these mechanical terms instead of in terms of
astrological portents, soul, mind, spirits, humours, and other vague
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notions. Quantitative studies of the flow of water in pipes, they be-
lieved, would cover the case of blood flowing in arteries and veins.
Indeed, Harvey’s proof that the blood circulates around the body
before. returning to the heart reinforced this mechanistic view be-
cause it likened the body to a pumping plant with the heart as the
pump. The work on light would explain much of the bodily func-
tion of sight while the study” of sound would clarify the problems
involving the sense of hearing. Two great works, Man a Machine
by the celebrated French p'hysician, Julian O. de la Mettrie, and
The System of Nature by the French radical, Baron Paul Heinrich
d’Holbach, went so far as to ‘explain’ consciousness, the bodily proc-
esses, and all human thoughts and actions in terms of matter and
motion. Not long after Newton studied the heavens, La Mettrie
claimed to have discovered the calculus of the human mind and the
French economist, Frangois Quesnay, announced equations for eco-
nomic and social life. It seemed to be only a question of time before
all phenomena, natural, social, and mental, would be reduced to
mathematical laws.

The secret of the successes already attained and those confidently
awaited was clear to the eighteenth-century thinkers. Men such as
the Comte de Buffon, the leading French naturalist, and the Marquis
de Condorcet, the famous metaphysician, discerned that the intro-
duction of quantitative methods into science invested it with a new
power to rationalize and master nature. Kant declared, in fact, that
the progress of a science could be determined by the extent to
which mathematics had entered into its method and contents.
Mathematics thus became the celebrated key to knowledge, the
‘Queen of the Sciences.’

Appreciation of the already amazing power of the allies, mathe-
matics and science, imbued thinking men with enthusiasm for a
sweeping reorganization of all knowledge along the following lines.
First of all, they exalted human reason as the most effective instru-
ment for the attainment of truths. Second, because they regarded
mathematical reasoning as the embodiment of the purest, deepest,
and most efficacious form of all thought, the perfect justification of
the claims made for the mental faculties of human beings, they
urged the use of mathematical methods and mathematics proper for
the derivation of knowledge. Third, investigators in each field of
inquiry were to search for the relevant natural, mathematical laws.
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In particular, the concepts and conclusions of philosophy, religion,
politics, economics, ethics, and aesthetics were to be recast, each in
accordance with the natural laws of its field.

The chief characteristic of this new approach to knowledge was
unbounded confidence in reason and in the validity of the extension
of mathematical methods throughout the physical and formal sci-
ences and beyond them to all fields of knowledge. This brave pro-
gram, as we shall see, was not entirely successful. Not all problems
yielded to mathematical methods, despite the expectations and ef-
forts of many great men. Yet the rationalistic temper of the period
permanently altered the course of thought in almost all fields. And,
as the reason-intoxicated leaders of the eighteenth-century Enlight-
enment anticipated, mathematics served as the fulcrum of the lever
that overturned the existing world order and as the chief instrument
to forge a new one.

It was almost to be expected that one of the first major efforts of
the eighteenth-century thinkers should be to formulate a mathe-
matical approach to all problems. Descartes, we saw, had sought to
reconstruct all knowledge on an unquestionable basis and had singled
out the deductive method of mathematics as the only reliable one.
Though he envisioned a ‘universal mathematics,” he offered no sym-
bolism or technique, however, with which to attack non-mathemati-
cal problems comparable to his introduction of algebra for the study
of curves.

In pursuit of the same broad goal as Descartes’, the mathematician
and philosopher Leibniz launched a more ambitious program. He
sought to devise a universal, technical language and a calculus that
would be adequate to embrace and prosecute effectively all in-
quiries. Thereby he hoped that all questions facing mankind would
be readily answered. Mathematics was not merely the inspiration for
Leibniz’s plan but was also the starting point for its execution. This
subject already had an ideal language and modes of operation suited
to its purposes. Why not, reasoned Leibniz, broaden the scope of the
mathematical language and mathematical machinery to include all
studies? He therefore proposed as a first step toward his universal
deductive science the decomposition of all ideas employed in thought
into fundamental, distinct, and non-overlapping ones just as a com-
posite number such as 24 is decomposed into the prime factors 2
and 3. At first, he used prime numbers as symbols for the funda-
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mental ideas but later he decided to construct a special language
with symbols similar to Chinese ideograms. Complex ideas were to
be represented by combinations of the basic symbols just as a quan-
tity such as a(b -+ ¢) represents a complex algebraic quantity. He
then intended to codify the laws of reasoning so that a person could
apply them to the symbols and combinations of symbols in order to
deduce conclusions as mechanically and as efficiently as mathematics
does in algebra.

At first blush Leibniz’s plan seems preposterous. The expectation
that all questions in all fields can be settled strikes a modern person
as rather far-fetched. Yet this much can be said in Leibniz’s behalf.
The history of mathematics shows that the introduction of better
and better symbolism and operations has made a commonplace of
processes that would have been impossible with the unimproved
techniques. To take the simplest example, the use of the Hindu-
Arabic symbols for our numbers and of positional notation makes
it possible for elementary school children today to perform opera-
tions beyond the capacities of learned mathematicians of Greek,
Roman, and medieval times. Nevertheless Leibniz was too ambi-
tious. Not only did he himself never complete his efforts in these
directions, but his belief that all ideas could be decomposed into
relatively few fundamental ones has not been substantiated.

Yet his program did lead to some action and results in the nine-
teenth century. Logic itself has adopted his methods to the extent of
employing symbols for the fundamental ideas and operations that
occur in reasoning and to the extent of carrying out its investigations
into the nature and forms of valid reasoning in this purely symbolic
language. Thus Leibniz is the founder of the science known today
as symbolic logic, a science actively pursued in our own century by
such learned men as Bertrand Russell and Alfred North Whitehead.

If the attempt to solve all problems by a universal calculus was
abortive, the same cannot be said for the other revisions of knowl-
edge which the Newtonian age undertook. The most pervasive
change was made, naturally enough, in the sciences themselves.
When Descartes, Galileo, and Newton decided that the goal of sci-
ence was to find the mathematical laws of nature, the two fields,
mathematics and science, merged forces. The greater were the suc-
cesses that attended the combined efforts, the closer the alliance be-
came. Mathematical branches were created to further science and
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scierice supplied the principal mathematical problems. In fact, the
best mathematical accomplishments and the best scientific ones were
realized by the same people. It is indeed 1mpossible to judge whether
Newton, Leibniz, the Bernoulli family, D’Alembert, Legendre, La-
grange, and Laplace were more accomplished as mathematicians or
as scientists. Gradually, however, one of the partners began to domi-
nate the alliance and the eighteenth century witnessed the begin-
ning of a new phase of the relationship, for in this century mathe-
matics began to absorb science. Though science held steadily to its
objective of studying and fathoming nature, it became more and
more mathematical in content, language, and method.

Of the branches of science that became more and more mathe-
matical at the same time that they attained what appeared to eight-
eenth-century minds as perfection in the representation and ex-
planation of nature, the most outstanding and the most developed
branch was the science of mechanics. Galileo and Descartes had pro-
posed a program and philosophy, namely, that nature consisted of
matter in motion and that science had but to discover the mathe-
matical laws of these motions. One hundred years later this program
had been converted into a solid and most impressive reality. Through
the work of the initiators and of dozens of other leading lights, the
study of the motions of bodies on Earth and especially of the heav-
enly bodies had attained a completeness and apparent finality that
convinced the men of the Enlightenment of the truth and value of
this philosophy of science. It was in the eighteenth century that the
two monumental works on mechanics, Lagrange’s Mécanique ana-
lytique and Laplace’s Mécanique céleste ‘proved’ that nature 1s gov-
erned by precise and eternal mathematical laws which compre-
hended every phenomenon of motion observed by scientists.

At the same time, these scientific classics reduced mechanics to
pure equations. The science of mechanics proved to be a paradise
wherein mathematicians could roam freely and happily. In this do-
main no major unsolved problems troubled their minds and nature’s
phenomena were but fruit to be had for the picking. Whereas the
seventeenth century could pride itself on brilliant mathematical cre-
ations, the eighteenth century could boast of the successful mechani-
cal philosophy of nature and could be properly described as the age
of mathematical mechanics.

Concomitant with the change in the content of science were
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changes in language and modus operandi. The language becaine
more and more the language of mathematics with its precise, unam-
biguous, convenient, and universal symbolism. Science also began
to make much more extensive use of abstract or ideal concepts. Ac-
tually, all of us are continually abstracting ideas from experience
though, like the Moliére character who failed to realize that he had
been talking prose all his life, we are often unaware of it. The force
of gravity was one of the notable abstractions of the seventeenth
century. Space-pervading ether, another concept employed widely
since the seventeenth century, and mass, as a scientific concept, were
other important abstractions. Among famous abstractions intro-
duced since the 1600’s, we might mention also the concepts of power
and energy.

Science has become more mathematical in its methods by its wider
use of deduction. By this we mean that it has adopted axioms, as
mathematics did during the Greek period, and that it uses these
axioms in conjunction with the axioms and theorems of mathe-
matics to deduce its own theorems. We may ask: what axioms, in
addition to the purely mathematical ones, are at the basis of reason-
ing in physics, for example? Newton’s laws of motion and gravita-
tion are such axioms, and we have seen them used as such in pre-
ceding chapters. Another example of what may be termed a physical
axiom is the statement asserting the conservation of energy. This
axiom is suggested by the observation that when energy is expended
in one form it reappears in another. If muscular energy is used to
saw wood, energy in the form of heat appears in the saw and wood.
The energy latent in coal s used to create energy in the form of elec-
tricity. Upon the basis of these observations and many precise meas-
urements physicists are willing to accept as axiomatic the fact that
in physical and chemical processes energy is never lost but merely
changes form.

The conversion of one whole branch of science into an essentially
mathematical discipline, as well as the growing use by science of the
language, conclusions, and processes of mathematics such as abstrac-
tion and deduction, has been characterized as the mathematization
of science. It seemed clear in the eighteenth century that it was only
a matter of time before all of science would be mathematized and
indeed that the progress of science would be more and more rapid
as the absorption of science by mathematics continued.
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In their investigation of nature the scientists of the Renaissance
sought and found mathematical truths. Of course, mathematics had
been recognized as a source of such truths since Greek times. Only
after the Renaissance, however, did mathematical laws begin to make
such sweeping affirmations about the universe that they jeopard-
ized the titles of the traditional philosophic and religious rulers of
the realm of truth. Indeed mathematics was revealing a new order
and plan in the universe more majestic than any ever offered before.
And with mathematics in the ascendancy and pointing to a zenith
of accomplishment beyond man’s imagination, both philosophy and
religion had to discard long established systems of thought and re-
build in the light of the new mathematical and scientific knowledge.

The philosophers began reconstruction by reopening the ques-
tion: how does man come to know truths? Theologians were equally
concerned with this question, for the new mathematics and science
had destroyed so much of what had passed for knowledge that among
intellectuals, at least, the orthodox religious belief in God was fast
disappearing. Since proof of God’s existence was not likely to result
from a mathematical theorem or a scientific experiment, some saw
the necessity for founding that belief in a new theory of knowledge.
Perhaps the concept of a deity could be shown to be inborn in man
and thereby placed above all doubts.

How does man come to know truths? How does man obtain the
knowledge he is willing to swear by? How does he account for the
conviction that accompanies such knowledge? The philosophers pon-
dered these problems and brought forth answers which disappointed
the theologians to the same degree that they reflected the new out-
look of the age.

Responding directly to the knowledge being acquired by mathe-
matics and science, the philosopher Thomas Hobbes affirmed first in
his Leviathan (1651) that external to us there is only matter in mo-
tion. External bodies press against our sense organs and by purely
mechanical processes produce sensations in our brains. All of our
knowledge is derived from these sensations.

A sensation may linger in the brain because, like all matter, it
possesses inertia. The sensation is then called an image. When 2
train of images arrives, it recalls others already received as, for ex
ample, the image of an apple recalls that of a tree. Thought is the
organization of chains of images. Specifically, names are attached to
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bodies and properties of bodies as they appear in images, and
thought consists in connecting these names by assertions and in seek-
ing the relations that necessarily hold ameng these assertions. Knowl-
edge consists of regularities discovered by the brain as it organizes
and relates the assertions. Now mathematical activity produces just
such regularities, for through mathematics the brain singles out and
abstracts necessary relations that are not immediately apparent in
physical objects as such. Hence the mathematical activity of the
brain produces genuine knowledge of the physical world and mathe-
matical knowledge is truth. In fact, reality is accessible to us only
in the form of mathematics.

So strongly did Hobbes defend the exclusive right of mathematics
to truth that even the mathematicians objected. In a letter to a lead-
ing physicist of the age, Christian Huygens, the mathematician John
Wallis wrote of Hobbes:

Our Leviathan is furiously attacking and destroying our Universities (and
not only ours but all) and especially ministers and the clergy and all reli-
gion, as though the Christian world had no sound knowledge, none that
was not ridiculous either in philosophy or religion, and as though men
could not understand religion if they did not understand philosophy, nor
philosophy unless they knew mathematics.

The emphasis placed by Hobbes on the purely physical character
of sensation and of the action of the brain in reasoning shocked
many philosophers to whom the mind was more than a mass of
matter acting mechanically and who sought support for religious
concepts such as God and the soul. In his Essay Concerning Human
Understanding, published in 16go, John Locke began somewhat as
Hobbes did, but unlike Descartes, by asserting that there are no
innate ideas in men; they are born with minds as empty as blank
tablets. Experience, through the media of the sense organs, writes
on those tablets and produces simple ideas. Some simple ideas are
exact resemblances of qualities actually inhering in bodies. These
qualities, which he called primary, are exemplified by solidity, ex-
tension, figure (shape), motion or rest, and number. Such proper-
ties exist whether or not anyone perceives them. Other ideas that
arise from sensations are the effects of the real properties of objects
on the mind but these ideas do not correspond to actual properties.
Among such secondary qualities are color, taste, smell, and sound.
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Although the mind cannot invent or frame any simple ideas, it
does have the power to reflect on, compare, and unite simple ideas
and thus form complex ideas. Here Locke departed from Hobbes.
In addition, the mind does not know reality itself but only ideas of
reality and works with these. Knowledge concerns the connection of
ideas such as their agreement or inconsistency. Truth consists in
knowledge that conforms to the reality of things.

Demonstration connects ideas and thereby establishes truths. Of
the certainties reached by demonstration the mathematical ones are
perfect. Locke preferred mathematical knowledge because, first, he
felt that the ideas with which it deals were the clearest and most
reliable. Furthermore, mathematics relates ideas by exhibiting neces-
sary connections among them and the mind understands such con-
nections best.

Locke not only preferred the mathematical knowledge of the phys-
ical world produced by science but he even rejected the direct physi-
cal knowledge. He argued that many facts about the structure of mat-
ter are not clear, such as the physical forces by which -objects attract
or repel each other. Moreover, since we can never know the real sub-
stance of the external world but only ideas produced by sensations,
physical knowledge can hardly be satisfactory. He was convinced,
nevertheless, that the physical world possessing the properties de-
scribed by mathematics does exist, as do God and we ourselves.

Locke’s philosophy is an almost perfect reflection of the contents
of Newtonian science. Consequently his influence on popular
thought was enormous. His philosophy pervaded the eighteenth cen-
tury much as Descartes’ did the seventeenth.

In their theories of knowledge both Hobbes and Locke put pri-
mary emphasis on the existence of a world of matter external to
human beings. While all knowledge stemmed from this source, the
truths about this world finally obtained by the mind, or brain, were
the laws of mathematics. Bishop George Berkeley, famous as a philos-
opher as well as a churchman, recognized in this emphasis on matter
and mathematics the threat to religion proper and to concepts such
as God and the soul.* With ingenious and trenchant arguments he
proceeded to attack both Hobbes and Locke and to offer his own
theory of knowledge.

* See also the next chapter.
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In his chief philosophical work, 4 Treatise Concerning the Prin-
ciples of Human Knowledge, wherein the chief causes of error and
difficulty in the sciences, with the grounds of scepticism, atheism
and irreligion, are inquired into, Berkeley made a frontal assault.
Both Hobbes and Locke had maintained that all we know are ideas,
but these ideas are produced by. the action of external, material
things upon our minds. Berkeley granted the sensations or sense
impressions and the ideas derived from them but challenged the
belief that they are caused by material objects external to the per-
ceiving mind. Since we perceive only the sensations and the ideas,
there is no reason to believe that anything is external to ourselves.
In response to Locke’s argument that our ideas of the primary qual-
ities of material objects are exact copies, Berkeley retorted that an
idea can be like nothing but an idea.

Berkeley strengthened his position with an argument uninten-
tionally supplied by Locke. The latter had distinguished ideas of
primary qualities from those of secondary qualities. The former cor-
responded to real properties whereas the latter existed only in the
mind. Berkeley asked: can anyone conceive of the extension and
motion of a body without including other sensible qualities, such
as color? Extension, figure, and motion per se are inconceivable. If,
therefore, the secondary qualities exist only in the mind, so do the
primary ones.

In brief, Berkeley argued that since we know only sensations and
ideas formed by these sensations but do not know external objects
themselves, there is no need to assume an external world at all. That
world does not exist any more than do the stars we see when we are
hit on the head. An external world of matter is a meaningless and
incomprehensible abstraction. If there were external bodies, we
should never be able to know it; and if there were not, then we
should have the same reasons as now to think that there were such
bodies. Mind and sensations are the only realities. Thus Berkeley
disposed of matter.

The reader may protest this conclusion and perhaps attempt to
rebut it as Samuel Johnson did by kicking a very solid-appearing
stone but the logic of Berkeley’s position is not thereby invalidated.
At best it may be rejected for the reason described by the Earl of
Chesterfield in a letter to his son:
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Doctor Berkeley, Bishop of Cloyne, a very worthy, ingenious, and
learned man, has written a book to prove that there is no such thing as
matter, and that nothing exists but in idea; that you and I only fancy
ourselves eating, drinking, and sleeping. . . His arguments are, strictly
speaking, unanswerable; but yet I am so far from convinced by them that
I am determined to go on to eat and drink, to walk and ride, in order to
keep that matter, which I so mistakenly imagine my body at present to
consist of, in the best plight possible. Common sense (which, in truth, is
very uncommon) is the best sense I know of.

It must be confessed that even Berkeley himself was not above an
occasional sortie into the very physical world whose existence he
denied. His last work, entitled Siris: A Chain of Philosophical Re-
flections concerning the virtues of Tar-Water, recommended the
drinking of water in which tar had been soaked as a cure for small-
pox, consumption, gout, pleurisy, asthma, indigestion, and many
other diseases. Such occasional missteps must not be held against
Berkeley. The reader who consults his delightful Dialogues of Hylas
and Philonous will find an extremely able and entertaining defense
of his philosophy. At any rate, by depriving materialism of its matter
Berkeley believed he had disposed of the physical world and with it
Newtonian science.

But Berkeley had yet to reckon with mathematics. How was it
that the mind was able to obtain laws which not only described but
predicted the course of the external world? What could he do to
counter the strongly established eighteenth-century belief in the
truths about an external world proffered by mathematics?

He proceeded to demolish mathematics and was shrewd enough
to attack it at its weakest point. The fundamental concept of the
calculus is that of the instantaneous rate of change of a function;
but, as we stated earlier, this concept was not clearly understood and
therefore not well presented by either Newton or Leibniz. Hence
Berkeley was able in his day to attack it with justification and con-
viction. In The Analyst of 1734, addressed to an infidel mathemati-
cian, he did not mince any words. Instantaneous rates of change he
condemned as neither finite quantities, nor quantities infinitely
small, nor yet nothing.” These rates of change were but ‘the ghosts
of departed quantities. Certainly . . . he who can digest a second
or third fluxion [Newton’s technical name for instantaneous rate of
change] . . . need not, methinks, be squeamish about any point in
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Divinity.” That the calculus proved useful nevertheless, Berkeley ac-
counted for on the grounds that somewhere errors were compensat-
ing for each other. Though Berkeley had made a criticism of the
calculus which was warranted at that time, he had not actually dis-
posed of all the truths mathematics had produced about the physi-
cal world. Nevertheless, having given his opponents something to
think about, he rested his case against mathematics at this point.

It would seem that Berkeley’s philosophy was about as radical as
thought can be on the subject of man’s relation to the physical world.
But the sceptic Scot, David Hume, thought Berkeley had not gone
far enough. Berkeley did accept a thinking mind in which the sen-
sations and ideas existed. Hume denied mind too. In his Treatise
of Human Nature (1739-40), he maintained that we know neither
mind nor matter. Both are fictions. We perceive neither. We per-
ceive impressions (sensations) and ideas such as images, memories,
and thoughts, all three of which are but faint effects of impressions.
There are, it is true, both simple and complex impressions and ideas,
but the latter are merely combinations of simple ones. Hence it can
be asserted that the mind is identical with our collection of impres-
sions and ideas. It is but a convenient term for this collection.

As for matter, Hume agreed with Berkeley. Who guarantees to
us that there is a permanently existing world of solid objects? All
we know are our own impressions of such a world. By association
of ideas through resemblance and contiguity in order or position, the
memory orders the mental world of ideas as gravitation presumes
to order the physical world. Space and time are only a manner and
order in which ideas occur to us. Similarly, causality is but a cus-
tomary connection of ideas. Neither space nor time nor causality
are objective realities. We are deluded by the force and firmness of
our ideas into believing in such realities.

The existence of an external world with fixed properties is really
an unwarranted inference. There is no evidence that anything exists
beyond impressions and ideas which belong to nothing and repre-
sent nothing. Hence there can be no scientific laws concerning a
permanent, objective physical world; such laws signify merely con-
venient summaries of impressions. Moreover, since the idea of
causality is based not on scientific proof but merely on a habit of
mind resulting from the frequent observation of the usual order of
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‘events,” we have no way of knowing that the sequences we have
observed will recur.

Man himself is but an isolated collection of perceptions, that is,
impressions and ideas. He exists only as such. Any attempt on his
part to perceive himself reaches only a perception. All the other men
and the supposed external world are just perceptions to any one
man and there is no assurance that they exist.

Only one obstacle stood in the way of Hume's thoroughgoing
scepticism, namely, the existence of the generally acknowledged
truths of pure mathematics itself. Since he could not demolish these,
he proceeded to deflate their value. The theorems of pure mathe-
matics; he asserted, were no more than redundant statements, need-
less repetitions of the same facts in different ways. That 2 X 2 equals
4 1s no new fact. Actually, 2 X 2 is but another way of saying or writ-
ing 4. Hence this and other statements in arithmetic are mere tautol-
ogies. As for the theorems of geometry, they are but repetitions in
more elaborate form of the axioms, which in turn have as much
meaning as 2 X 2 equals 4.

Hume’s solution, then, of the general problem of how man ob-
tains truths is that he cannot obtain them. Neither the theorems of
mathematics, the existence of God, the existence of an external
world, causation, nature, nor miracles constituted truths. Thus
Hume destroyed by reasoning what reasoning had established while,
at the same time, he revealed the limitations of reason.

Hume’s work not only vitiated the efforts and results of science
and mathematics but challenged the value of reason itself. Some
philosophers, such as Rousseau, drew the obvious inference. They
urged the abandonment of reason in favor of an imaginative and
intuitive approach to life. To them reason was a form of self-decep-
tion, an unfortunate delusion. The thinking man was after all noth-
ing but a sick animal.

But such a conclusion, such a denial of man’s highest faculty, was
revolting to most eighteenth-century thinkers. Mathematics and
other manifestations of human reason had accomplished too much
to be so easily cast aside as aberrations. The supreme philosopher
Immanuel Kant actually expressed his revulsion for Hume’s unwar-
ranted extension of Locke’s theory of knowledge. Reason must be
re-enthroned. It appeared indubitable to Kant that man possesses
ideas and truths beyond mere amalgamations of sense experience.
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Kant thereupon undertook an entirely new approach to the prob-
lem of how man obtains truths. His first step was to distinguish be-
tween two kinds of statements or judgments that give us knowl-
edge. The first kind, which he called analytical and which is ex-
emplified by the statement Al bodies are extended, does not really
contribute to knowledge. The statement that bodies are extended is
merely an explicit statement of a property that bodies have by the
very fact that they are bodies and says nothing new. Hence we learn
nothing by being informed that they are extended, though the
statement may perhaps serve for emphasis. On the other hand, the
statement that all bodies have color does add something new to our
knowledge because it adds to our information about bodies a fact
not inherent in their nature as bodies. This type of judgment Kant
cailed synthetic. Kant also distinguished between knowledge ob-
tained directly from experience and knowledge somehow obtained
by the mind independently of experience. The latter type he called
a priori.

According to Kant, truth cannot come from experience alone, for
experience is a mélange of sensations, devoid of concepts and or-
ganization. Mere observations therefore will not furnish truths.
Truths, if they exist, must be a priori judgments and, moreover, in
order to be genuine knowledge, they must be synthetic judgments.
To combat Hume and Rousseau, Kant showed first that man does
possess truths, that is, he does have a priori synthetic judgments.

Patent evidence was at hand in the body of mathematical knowl-
edge. Almost all of the axioms and theorems of mathematics were
to Kant a priori synthetic judgments. The statement that the straight
line is the shortest distance between two points is certainly syn-
thetic, since it combines two ideas, straightness and shortest dis-
tance, neither of which is implied by the other. Also, it is a priori
since experience with straight lines or even measurements could not
insure the invariable and universal truth Kant believed this state-
ment to be. Hence to Kant there was no question that man does
have a priori synthetic judgments, that is, genuine truths.

Kant probed still deeper. Why, he asked, was he willing to accept
as a truth the statement that the straight line is the shortest distance
between two points? How is it possible for the mind to know such
truths? This question could be answered if we could answer the
question of how mathematics is possible. The answer Kant gave is
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that our minds possess, independently of experience, the forms of
space and time. Kant called these forms intuitions. Space is therefore
an intuition through which the mind necessarily ‘views’ the physical
world in order to organize and understand sensations. Since the very
intuition of space has its origin in the mind, certain axioms about
space are at once acceptable to the mind. Geometry then goes on to
explore the logical implications of these axioms.

Why, then, do the theorems of geometry, which are mental con-
structs, apply to the physical world outside mind? Kant’s answer is
that the form of space which the mind inherently possesses is the
only way in which it can comprehend spatial relations. We perceive,
organize, and understand experience in accordance with this spatial
form; that is, experience fits into this form as dough into a mold.
For this reason there must be agreement between Euclidean geom-
etry and our experience with physical figures.

More generally, Kant argued that the world of science is a world
of sense impressions arranged by the mind in accordance with innate
principles or categories. These sense impressions do originate in a
real world but unfortunately this world is unknowable. The mind
itself provides the organization and understanding of experience.
Actuality can be known only in terms of the subjective categories
supplied by the perceiving mind.

It is evident from the above sketch of Kant’s theory of knowledge
that he made the existence of mathematical truths a central pillar
of his philosophy. In particular, he relied on the truths of Euclidean
geometry. His inability to conceive of any other geometry convinced
him there could be no other. Thereby the truths of Euclid and the
existence of a priori synthetic propositions were guaranteed.

Alas, the nineteenth-century creation, non-Euclidean geometry,
demolished Kant’s arguments. Nor was the problem of how man ob-
tains truths definitively answered by subsequent contributions to
philosophic thought. Indeed, as we shall see later, the subject was
thrown into even greater confusion by the non-Euclidean geometers.
Nevertheless, though the great eighteenth-century philosophers did
not succeed in answering the question of how man comes to know
truths, they did at least open up the dams of thought and permit
new ideas to flow freely through the mind of mankind.

Although the eighteenth-century philosophers disagreed vigor-
ously on the question of how man comes to know truths, there was
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very little disagreement among them on what was true. As the laws
of motion and gravitation extended their sway over more and more
phenomena, and as planets, comets, and stars continued to pursue
paths so precisely described by mathematics, the assumption of
Descartes and Galileo that the universe is interpretable in terms of
matter, force, and motion became a conviction in the mind of almost
every thinking European.

Because matter in motion was the key to a mathematical descrip-
tion of falling bodies and planetary motion the scientists themselves
attempted to fit such a materialistic explanation to phenomena whose
nature they did not understand at all. Heat, light, electricity, and
magnetism were regarded as imponderable kinds of matter, impon-
derable meaning merely that the densities of these kinds of matter
were too small to be measured. The matter in heat, for example,
was called caloric. A body being heated soaked up this matter just
as a sponge soaks up water. Electricity was, similarly, matter in the
state of a fluid and this fluid flowing through wires was the electric
current.

Of the three concepts, matter, force, and motion, force acted on
matter and motion was a property of matter; hence matter was
fundamental. The philosophers thereupon proclaimed matter be-
having in accordance with fixed mathematical laws as the sole reality.
This is the doctrine of materialism. As expressed by Hobbes in its
crudest form it asserted:

The universe, that is, the whole mass of all things that are, is corporeal,
that is to say, body, and hath the dimensions of magnitude, namely,
length, breadth, and depth; also, every part of body is likewise body, and
hath the like dimensions, and consequently every part of the universe is
body, and that which is not body is no part of the universe; and because
the universe is all, that which is no part of it is nothing, and consequently
nowhere.

Body, he continued, is something that occupies space, is divisible
and movable, and behaves mathematically.

Materialism, then, may be said to assert that reality is merely a
complex machine, a mechanism of objects moving in space and time.
Since man himself is part of physical nature, all of man, too, must be
explainable in terms of matter, motion, and mathematics. In the
language of Hobbes all that exists is matter; all that occurs is mo-
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tion; consciousness is simply the impact of material particles on
brain substance. Other exponents of the new philosophy such as
La Mettrie, whose Man a Machine stated the thesis bluntly, and
Baron d’Holbach, whose book The System of Nature was called the
Bible of materialism, went even further. Thought, as well as con-
sciousness, was considered to be molecular motion. The mind can-
not be distinguished from the brain and perishes with it. The con-
cept of a non-physical ‘substance’ such as soul must be completely
rejected. Man’s moral state is only a special aspect of his physical
state, a particular mode of action caused by his organization and
physical environment. Prejudices alone prevent us from examining
the influences that determine our moral behavior. In brief, matter
is the cause and explanation of all phenomena and is the startling
alternative to God.

Before we examine the devastating consequences of materialism
we should be a little clearer about the precise source of its strength.
The scientific activity of observation and experimentation, as well
as the scientific concepts of matter, force, and motion, combined
with pure mathematics to produce the evidence for the doctrine. It
would seem, however, that a doctrine which asserted the funda-
mental reality of matter should rely more heavily on scientific rather
than on mathematical foundations. Yet, as Newton clearly realized,
the strength of the materialistic movement lay not in solid matter
but in the immaterial abstractions of ethereal mathematics. The en-
tire system of natural science, founded by Galileo and Descartes and
erected by Newton, rested upon the universal force of gravitation.
Though Newton had made the theory of this universal force indis-
pensable, he admitted that he did not know its nature. In fact, he
stressed the problem of investigating its physical nature and its
modus operandi, rejecting as unripe and vague his own conjectures
on the subject. With prophetic insight he adhered strictly to the
mathematical formulation of the action of gravity and to the mathe-
matical consequences of the formulation. Mathematics was the sign
in which Newton conquered.

Of course Newton and his successors expected that the physical
explanation of the action of gravity would be forthcoming some day.
At the very least, such famous scientists as Huygens, Leibniz, and
Johann Bernoulli realized that the explanation was missing, and
that because of this deficiency in physical theory they too were com-
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pelled to treat the behavior of gravity entirely mathematically. In
the meantime lesser scientists referred to it as ‘action at a distance’
as though the phrase somehow supplied a physical explanation.
Gradually the endless repetition of the words ‘action at a distance,
which merely slurred over the problem, dulled critical sensibilities
into accepting the phrase as a substitute for an explanation. Physical
meaning was bound and sacrificed on the altar of mathematical fer-
tility. The nature and modus operand: of the force of gravitation
have never been explained.

For this reason the materialists who talked so glibly and assuredly
for centuries after Newton about the solid, tangible, observable phe-
nomena of nature were actually proclaiming in the very same breath
the importance of a notion more mystic and obscure than transub-
stantiation. In boasting of the progress of the materialistic outlook
in science they were unconsciously boosting the importance of math-
ematical laws, for the materialistic philosophy which appears to de-
rive its strength mainly from the scientific treatment of matter actu-
ally derives it from mathematics, the most abstract of scientific ab-
stractions. Pythagoreanism, with its emphasis on number relations as
the ultimate reality, was being vindicated in the guise of materialism.

Despite the inadequate material basis for materialism, the belief
that the universe can be completely explained in terms of the me-
chanical concepts of force, matter, and motion and their mathemati-
cal relations acquired such a hold on the minds of men that it be-
came a fashionable commonplace. It still is a conviction possessed by
many who follow consciously or unconsciously the point of view of
Newton’s immediate successors. This conviction is often voiced
today despite the fact that it is now realized that nature is far more
complex than the mechanically minded eighteenth-century scientists
believed it to be. It is this conviction that is the basis for the nine-
teenth-century belief in scientific perfectibility and in the ultimate
solution of all problems, such as a cure for cancer and the creation
of life by chemical means.

The corollary of eighteenth-century materialism was determinism.
Mathematical formulas provided veridical descriptions of so many
phenomena and proved so useful in applications as to make ines-
capable the conclusion that the world was carefully planned and that
it operated in accordance with these formulas. The world’s course
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appeared completely determined by harmonious, mathematical laws
that prescribe for each event a necessary consequent event. The
leading exponents of this view were the brilliant eighteenth-century
mathematicians Lagrange and Laplace. To Laplace the future was
as clearly readable as the past.

We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at any given moment knew
all the forces that animate nature and the mutual positions of the beings
that compose it, if this intellect were vast enough to submit its data
to analysis, could condense into a single formula the movement of the
gredtest bodies of the universe and that of the lightest atom: for such an
intellect nothing could be uncertain; and the future just like the past
would be present before its eyes.

The Age of Reason is gone. Philosophically speaking we have pro-
gressed since the eighteenth century. Determinism, however, is still
the most popularly accepted point of view. The prevailing opinion
is that the world is fashioned in accordance with mathematical laws
and that its future is determined by them. Some appreciation of the
conviction people still feel for this doctrine may be gained from our
own behavior, which is very much a reflection of eighteenth-century
thought. Consider, for example, the modern reaction to an eclipse.
Unlike primitive people, we do not rush out into the open, fall on
trembling knees, and pray to the gods to avert the calamity the im-
pending event presages. Instead we go out with stop watches in our
hands to check to the fraction of a second the scientists’ prediction
of the eclipse. And at the end of such occurrences we are all the more
convinced of the regularity and the lawfulness of nature’s behavior.

The deterministic point of view was held so firmly that the mate-
rialists applied it at once to the actions of man as part of nature.
Determinism applied to man mercilessly declares: There is no free
will. The human will is determined by external physical and physio-
logical causes. On this subject Hobbes was blunt and direct: Free
will is a meaningless conjunction of words, insignificant nonsense.
And Voltaire stated in his Ignorant Philosopher:

It would be very singular that all nature, all the planets, should obey
eternal laws, and that there should be a little animal, five feet high, who,
in contempt of these laws, could act as he pleased, solely according to his
caprice.
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This conclusion was so disturbing that even materialists sought
to modity its severity. Some said that though the body’s actions are
determined its thoughts are not. This resolution was not too com-
forting for it vitiates thoughts that lead to actions. According to this
view man is still an automaton. Others reinterpreted the meaning
of freedom so as to retain some semblance of it. Voltaire hedged: “To
be free means to be able to do what we like, not to be able to will
what we like.” Apparently, we must like what is willed for us in order
to be free. This unhappy position was also held by Leibniz.

By an act of will we shall interrupt our discussion of this prob-
lem. The most significant arguments for and against free will that
have since been offered by philosophers can be understood only after
we have surveyed some of the more recent mathematical develop-
ments. For the moment we can obtain some indication of the success
of mathematical inroads into the territory of philosophy from the
remark of the famous nineteenth-century physicist Lord Kelvin that
‘Mathematics is the only good metaphysics.’



XVII

The Newtonian Influence: Religion

And as of old from Sinai’s top
God said that God is One,

By Science strict so speaks He now
To tell us, There is None!

Earth goes by chemic forces; Heaven's
A Mécanique Céleste!

And heart and mind of human kind
A watch-work as the rest!

ARTHUR CLOUGH

Giordano Bruno had declared that ‘man is no more than an ant in
the presence of the infinite.” This challenge to the Christian doctrine
that man is at the apex of creation and the chief object of God’s
ministrations and solicitude could be answered in only one way in
the sixteenth century—burning at the stake. The world of science
came to Bruno’s support a century too late.

As law after law was unearthed during the intervening century,
the more nature appeared glorified and man humbled. The math-
ematical and mechanical realm of extension and motion, with man
as an accidental offshoot and an irrelevant spectator, stood forth as
the real world. The fact that the mind of man had penetrated to the
core of phenomena and had devised the mathematical laws that de-
scribed and rationalized nature passed unnoticed. Instead, emphasis
was placed on the existence of laws, while man was deprecated be-
cause his limited mind was only gradually able to read them. In
effect, nature was being read slowly but man was being read out of
nature. It was certainly apparent that the universe took no account
of human goals, desires, or needs. The good intent of God toward
man in His plan and organization of the universe appeared to be a
baseless notion having no more support than a myth.

257
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As with man, so with God. The Newtonian era created celestial
mechanics but destroyed heaven, the seat of God and the eventual
dwelling place of privileged human souls. The work of Copernicus,
Kepler, and Galileo on the heliocentric theory showed not only that
the heavens were guided by simpler mathematical laws than the Ptol-
emaic theory indicated but also compelled the abandonment of the
naive conceptions of the cosmos that had become imbedded in Aris-
totelian and Thomist philosophy and that had been taken over by
Christianity. Later Newton showed that heavenly bodies follow the
same laws as do bodies on Farth. It seemed certain, then, that the
heavenly bodies were made of the same stuff as was the Earth. By this
discovery more mystery, as well as the fears and superstitions asso-
ciated with the planets, were abolished.

God lost not only His home but His importance. To Descartes it
was already clear that God, the omnipotent, could not abolish exten-
sion or the laws of motion. Newton, along with Descartes, credited
God with the act of creation but restricted His daily functions. God
prevented the stars from falling into each other and corrected irreg-
ularities that arise in the motions of the planets and comets. Huygens
and Leibniz curtailed God’s role even more. They too credited Him
with the initial act of creation, at which time He established the
mathematical order of the universe. Thereafter, however, His active
relations with it ceased. In fact, it was an-insult to God to believe
that His creations would need repair.

Actually, Huygens and Leibniz were ignoring astronomical obser-
vations of irregularities unexplained in their time. These seeming
aberrations from mathematical law, which Newton thought might
become disruptive and require God’s intervention, were shown later
by Lagrange and Laplace to be periodic and hence part of the order
of nature. The universe was stable; there was no room for whim or
chance. By this masterly mathematical achievement even the correc-
tive measures formerly required of God were made unnecessary and
God was deprived of one more duty. In fact, the intervention of
Providence in the affairs of nature became impossible while prayer
for intercession on behalf of man certainly appeared futile.

It was not long before God Himself was completely dispensed with,
for Hume attacked causality and, consequently, the need for a cre-
ator, or Prime Mover, of the universe. The world became an eternal.
infinite, self-moving machine which existed before and would exist
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after insignificant man, serving no apparent purpose except perhaps
to delight the mathematician who was slowly but surely uncovering
the controlling principles. Events took place not because God ordered
them individually and after due consideration but rather because
they were predetermined by fixed, already existing mathematical
laws. Thus God, who in medieval thought was not merely a cosmic
carpenter but the end of all thought, activity, and purpose in the
universe, was reduced to, at best, only a means to an end; the end
itself became the regular, exact working of all the processes of the
universe.

Not only the content but the spirit which suffused the great math-
ematical and scientific works of the seventeenth and eighteenth cen-
turies threatened religious thinking. Since reason was exalted, faith
was discredited as a meaningless guarantee of truth and was labeled
credulity. In addition, under the scrutiny of rationalism much of the
mystery and emotional appeal of the orthodox religions was dis-
pelled. Emotion itself was frowned upon and considered suspect.
Materialism submerged spiritualism, destroyed the soul and its after-
life, and rendered pointless the Christian emphasis on preparation
for an after-life. Determinism challenged free will, excused man’s
sins, and thereby removed the need for salvation. On all battle fronts
religion and Newtonianism met as combatants.

This course of thought was contrary to the wishes and intentions
of the great seventeenth-century scientists, for they were God-fearing
men. Their very scientific work was an expression of religious feeling
in that they studied nature to perceive God’s law and order. To para-
phrase Jamnes Thomson, they sought from motion’s simple laws to
trace the secret hand of Providence, wide-working through this uni-
versal frame. Fach of the great intellects possessed a combination of
mathematical or scientific genius and religious orthodoxy which to-
day are regarded as incompatible and possible only in a period of
transition. When these men did, however, become cognizant of the
threat their work posed for religious beliefs, they attempted to recon-
cile their intellectual and spiritual affirmations. Robert Boyle, famous
father of modern chemistry, devoted most of his time outside of the
laboratory to religion. Even his experimental work he regarded as
service to God. In his will he left funds to combat atheists, skeptics,
and other infidels. Isaac Barrow, Newton’s teacher, resigned his pro-
fessorship to turn to divinical studies. Newton, too, devoted himself
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to theology, and considered the strengthening of the foundations of
religion more important than his mathematical and scientific achieve-
ments, for the latter were restricted to uncovering God’s design of
the natural world only. Toward this end he contributed some studies
which attempted to prove that the prophecies of Daniel and the po-
etry of the Apocalypse made sense and to harmonize the dates of the
Old Testament with those of history. He often justified the hard and,
at times, dreary scientific work only because it supported religion by
providing evidence of God’s order in the universe. It was as pious a
pursuit as study of the Scriptures.

Most eloquent is Newton's statement of the classic argument for
the existence of God:

The main business of natural philosophy is to argue from phenemena
without feigning hypotheses, and to deduce causes from effects, till we
come to the very first cause, which certainly is not mechanical. . . What
is there in places almost empty of matter, and whence is it that the sun
and planets gravitate towards one another, without dense matter between
them? Whence is it that nature doth nothing in vain; and whence arises
all that order and beauty we see in the world? To what end are comets,
and whence is it that planets move all one and the same way in orbs con-
centric, while comets move all manner of ways in orbs very eccentric, and
what hinders the fixed stars from falling upon one another? How came
the bodies of animals to be contrived with so much art, and for what ends
were their several parts? Was the eye contrived without skill in optics, or
the ear without knowledge of sounds? How do the motions of the body
follow from the will, and whence is the instinct in animals? . . . And
these things being rightly dispatched, does it not appear from phenomena
that there is a being incorporeal, living, intelligent, omnipresent, who, in
infinite space, as it were in his sensory, sees the things themselves inti-
mately, and thoroughly perceives them; and comprehends them wholly
by their immediate presence to himself?

In the second edition of his Principles, Newton answers his own
questions:

This most beautiful system of sun, planets, and comets could only proceed
from the counsel and dominion of an intelligent and powerful Being.
This Being governs all things, not as the soul of the world, but as Lord
over all.

Joseph Addison’s ‘Hymn’ framed Newton’s argument in poetical
terms:
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The spacious firmament on high,
With all the blue ethereal sky,

And spangled heavens, a shining frame,
Their great Original proclaim.

Th’ unwearied sun from day to day
Does his Creator’s power display;
And publishes to every land

The work of an Almighty hand. . .
What though in solemn silence all
Move round the dark terrestrial ball;
What though no real voice nor seund
Amidst their radiant orbs be found?
In Reason’s ear they all rejoice,

And utter forth a glorious voice;
Forever singing as they shine,

“The Hand that made us is divine.’

Newton was convinced too that God was a skilled mathematician
and physicist. He says in one of his letters,

To make this [solar] system, therefore, with all its motions, required a
cause which understood, and compared together the quantities of matter
in the several bodies of the sun and planets, and the gravitating powers
resulting from thence; the several distances of the primary planets from
the sun, and of the secondary ones [i.e., moons] from Saturn, Jupiter, and
the earth; and the velocities with which these planets could revolve about
those quantities of matter in the central bodies; and to compare and ad-
just all these things toge‘her in so great a variety of bodies, argues that
cause to be not blind or fortuitous, but very skilled in mechanics and
geometry.

Leibniz wrote many articles and books to combat the spreading
apostasy. His Testimony of Nature Against Atheists tries to prove
that the assumption of the existence of God explains some aspects of
natural phenomena better than the scientific description in terms of
matter, force, and motion, while his Essais de Théodicée rephrases
the familiar argument that God is the intelligence who created this
carefully designed world.

The defense of religion by Boyle, Newton, Leibniz, and others was
not without some effect. Those people who were favorably disposed
to religion experienced a tremendous exhilaration. God, the cre-
ator, had built a vaster heaven and Earth than man had previocusly
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dreamed of, a universe that operated unfailingly in accordance with
wonderfully precise mathematical laws. Moreover, these laws re-
vealed new aspects of God’s nature in both senses of the phrase. Such
manifestations of God’s majesty could only renew faith and give ad-
ditional reason for exultation in that faith.

Nevertheless, the efforts of these men were doomed to failure.
Though mathematicians and scientists affirmed and defended the
existence of God and the soul, these concepts were presented as intel-
lectual abstractions rather than as deeply felt convictions. To accept
such entities the mind had to know them as clearly and as distinctly
as it knew mathematical conclusions. Since God was not known with
such distinctness it followed that He did not exist. At least, history
chose this implication rather than the one Boyle, Newton, and Leib-
niz had intended to support in their theological writings.

Their works failed to stem the tide that engulfed huge portions
of the existing religious edifices. The fond hope that the mechanistic
philosophy of nature as advanced by Descartes and Galileo and de-
veloped by Boyle, Newton, and Leibniz would furnish a lasting proof
of the existence of a Divine Creator and thereby buttress Christian-
ity was dashed by their successors. The mathematical and scientific
work of the age was made the foundation of an intellectual crusade
against the orthodox religions and helped to support all shades of
opposition to these faiths. The name of Newton, in particular, be-
came a symbol for the spirit of revolt against religion.

Desertions from the ranks of the religious became widespread. For
example, whereas all the great French intellects of the seventeenth
century were warmly attached to Catholicism, all those of the next
century were opposed to it. The position of these intellectuals passed
successively from a defense of orthodoxy to a rationalization of ortho-
doxy, from belief to Christian Deism, and then to ‘scientific Deisin,’
to skepticism, and finally to atheism.

To survey the influence of Newtonianism on religion we shall fol-
low these leading eighteenth-century currents. Faith had been the
main support of religion but the new science and mathematics made
the age partial to reason. Therefore, religion somehow had to be
associated with reason. Toward this end some men maintained that
the aim of theology should be to found the Christian religion on
reason rather than revelation. Such a basis would guarantee its truth
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and, since reason and nature were wont to be identified in that age,
would also provide a natural religion.

The movement to re-establish Christianity on rational principles
is sometimes referred to as rationalistic supernaturalism, and one of
its most famous exponents was John Locke. In his Reasonableness of
Christianity and Discourse on Miracles he argued that religion is
essentially a science; that is, from a set of reasonable axioms further
propositions can be deduced that are not only reasonable but useful.
Among reasonable axioms he proposed three: the existence of an
omnipotent God, an axiom well supported by knowledge of our exist:
ence and the wisdom manifested in nature; virtuous living in obedi-
ence to the will of God; and the existence of a future life in which
God will reward the virtuous and punish the wicked. It follows from
these axioms that man will live so as to merit and attain reward in
heaven.

Since all of Christianity could not be rationalized, some hedging
was to be expected. In addition to the truths that were in accordance
with reason or deducible from reasonable axioms, Locke admitted
truths that are above reason and that are supplied by revelation.
Resurrection of the dead is such a truth. We must be sure, however,
that a revelation really comes from God; also, no revelation must be
contrary to our clear intuitive knowledge. Reason must judge.
Reason is, in fact, revelation whereby God communicates to us as
much truth as lies within the reach of our natural faculties. In any
case reason is the last judge and best guide. Unfortunately, vice and
the craftiness of priests prevent reason from being heard in matters
of religion.

Locke hedged further. Religion by its very nature must involve
man’s relations with a superior power and hence must contain some
supernatural elements such as miracles. Evidently, if the supernat-
ural itself could not be rationalized at least the admission of such
elements might be.

It is perhaps evident from Locke’s defense of orthodoxy that two
difficulties were central, namely, the justification of both revelation
and miracles. Some who were not content with Locke’s arguments
defended revelation on the ground that it was not inconsistent with
reason. Others adopted the negative defense that nature and, there-
fore, reason contain unexplained phenomena and hence are as baf-
fling as revelation. Neither explains evil, for example. Still others
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argued that God seeks to test our capacity for understanding by acts
of revelation and this accounts for their lack of clarity.

Miracles, which in former ages were the best proof of the existence
of God, now had to be rationalized, for they were inconsistent with
the order of nature. Some thinkers chose to accept the miracles that
were ‘within’ reason or at least not contrary to reason. For example,
the dead could be brought back to life but women could not reason-
ably be turned into pillars of salt. To many, miracles were actually
natural events only seemingly unreasonable, just as the phenomenon
of snow would appear to be unreasonable to a native of the tropics.

As might be expected, the attempts to defend orthodoxy by reason-
ing did not satisfy everyone. Most of the enlightened wanted a com-
pletely rational religion, Christian or not, and since Christianity
could not be made completely reasonable to them, these men pro-
ceeded to define and erect a new religion—Deism.

It has sometimes been remarked that for the Deists, Reason was
God, Newton's Principles, the Bible, and Voltaire, the Prophet. The
Deists believed there is a natural religion just as there are natural
mathematical laws of the heavens and Earth. It was not necessary,
however, to resort to revelation or the Bible in order to seek the
doctrines of this religion. They could be found by studying the sea,
the sky, the flowers, the earth, and men. The study of creation is
the best study of the Creator. From these natural sources rather than
from the Scriptures some fundamental principles would immediately
be apprehended and others then obtained by rational demonstration.
Human reason, successful in the physical sciences, would be success-
ful with this problem too.

By arguments too detailed to warrant repetition here, the Deists
arrived at several positive principles. God held his place as the de-
signer of the universe. He was the source of the universal laws dis-
covered by Newton. There was a future life in which each man would
be dealt with according to his merits. The worship of God and
repentance were encouraged because they fostered a better life on
Earth. Sin was disobedience to the dictates of reason. As these doc-
trines indicate, the Deists believed that the essence of religion was
morality.

Such doctrines did not constitute too much of a deviation from
Christianity. But the Deists also maintained that only those Christian
doctrines were valid which could be defended by reason. Any that
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carried a taint of superstition, irrationality, or myth had to be re-
jected. Since the virgin birth, the divinity of Christ, and the concept
of original sin were rationally inexplicable, these were among the
first to be thrown out. Miracles, special providences, and supernat-
ural revelation were also discarded as false. Rejection of such beliefs
naturally brought Deism into direct conflict with Christianity, and
despite the fact that the Deists accepted a God, albeit one suited to
the role of master of the Newtonian universe, they were called athe-
ists by the orthodox Christians.

Voltaire, the leading spirit and genius of the Enlightenment and
a devoted follower of Newtonian mathematics and physics, was the
chief advocate of the Deist movement. Championed by his lively and
prolific writings, Deism became, among the educated people, the
strongest of all religious movements of the eighteenth century. Here
in America Thomas Jefferson and Benjamin Franklin were con-
verted. So great was the influence of this rational religion that no
one of our first seven presidents professed Christianity, though of
course many made references to the Christian God in political ad-
dresses. Deism died down as a formal movement after the eighteenth
century, but it is still the essence of the prevailing religious attitude
among educated people of the twentieth century.

Many thinkers who wished to found a natural religion and were
therefore essentially Deists even dispensed with God. They argued
that natural theology was really a branch of science. The existence
of God as an agent essential to the workings of the universe was
rejected as extra-experimental. Furthermore, since the universe may
always have been as it is there was no need to assume a creator. The
argument for God as a First Cause was regarded as inferring the
action of an ‘inconceivable Being performing an inconceivable oper-
ation upon inconceivable materials.” Any explainable phenomenon,
on the other hand, did not require the existence of God.

With or without God, Deism attempted to be completely rational.
Actually, it catered somewhat to man’s desire for faith and mystery,
apropos of which it has been remarked that the Deists were ration-
alists with a nostalgia for religion. For this reason it did not satisfy
some of the great thinkers who were completely skeptical. These
men, among them the philosophers Hobbes, Hume, Montaigne, and
Diderot, the mathematician D’Alembert who was Diderot’s chief as-
sistant in the writing of the Encyclopédie, and the historian Edward
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Gibbon, preferred to see in religion nothing more than a historical
phenomenon that arises naturally with any people though it need
not be indispensable. Hobbes explained the existence of formal
religions as merely accepted superstition. ‘Fear of power invisible
feigned by the mind or imagined from tales, publicly allowed, is
religion; not allowed, superstition.” To ‘the infidel Hume,” for ex-
ample, religion was merely a mode of human behavior. No super-
natural elements in any faith were to be given the slightest credence.
His contempt for the vast bodies of theology which the leading faiths
had gradually created was unmistakable.

If we take in hand any volume of divinity, or school metaphysics, for
instance, let us ask, Does it contain any abstract reasoning concerning
quantity or number? No. Does it contain any experimental reasoning con-
cerning matter of fact and existence? No. Commit it then to the flames:
for it can contain nothing but sophistry and illusion.

Skepticism is most often an intermediate and transitory phase.
Human beings find it beyond their strength to balance on a fence
indefinitely. In eighteenth-century France skepticism was but a prel-
ude to atheism. Early in the century the denial of religion was so
rare and daring a view that the question of whether a disbeliever
could die in peace was much discussed and the atheist who died with
a jest on his lips was a sensation because he had not yielded to re-
morse; later on, however, atheism gained many followers. The French
materialists, who started, as did the rational supernaturalists and the
Deists, from the Newtonian structure of the universe, reasoned di-
rectly to-a complete denial of religion.

It was Laplace, France’s leading mathematician, who, in dispens-
ing with a creator, drew the ultimate conclusion from the Newtonian
cosmology. We have already related that when asked by Napoléon
why he made no use of God in his book on the heavenly bodies,
Meécanique céleste, Laplace replied that he had no need for such a
‘hypothesis.” He was able to describe the motions of the heavenly
bodies by recourse to mathematics and the Newtonian laws alone.
Laplace thus excelled Newton in parsimony with hypotheses, though
it was Newton who enjoined scientists not to include unnecessary
ones.

It is seemingly paradoxical that Newton could ‘prove’ God’s exist-
ence on the basis of his mathematical discoveries whereas Laplace
with even more marvelous confirmation of the mathematical design
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of the universe at hand saw no need for God. But this paradox is
readily explained by the remark of Pascal that nature proves the
existence of God only to those who already believe in Him.

Laplace’s stand on religion was shared by many other leading
French thinkers. The idea of God, according to Baron d Holbach,
does not correspond to anything real. Originating in fear and calam-
ity, it is created by the imagination to conciliate fictitious powers.
On this extrapolation from ignorance are founded bodies of dogma
and vast organizations. Religion diverts men’s minds from the evils
rulers inflict upon them and only serves to continue their misery by
promising happiness in another world if they agree to be unhappy
in this one. Ignorance, d’Holbach said, begets Gods; enlightenment
destroys them. God is but nature; soul is just body.

A large part of d’Holbach’s widely read System of Nature, which
was called the Bible of atheism, argues against the existence of God.
Thoroughly in agreement with this view, the physician Julian O.
de la Mettrie declared further that religion is useful only to priests
and politicians. Since man understood nature there was no need for
the primitive, superstitious account furnished by the established re-
ligions. Though La Mettrie was willing to admit the existence of
God, he regarded this existence as pure hypothesis and of no prac-
tical use. In fact it was dangerous and evil. Far from guaranteeing
morality it permitted religious leaders to stir up wars in the name
of God. Thus the culmination of materialism in France was a revolt
against what was regarded as the spiritual tyranny of all religions.

In the advocacy of atheism, religious thinking reached a pinnacle
too high for many people. Some who made the climb intellectually
were dizzied by the view and uncomfortable in the cold, rarefied at-
mosphere. Still others who attempted the climb could not find their
way up and preferred to have a kindly light lead them where it
would. The appeal for guidance was poignantly stated by Tennyson:

Strong Son of God, immortal Love,
Whom we, that have not seen thy face,
By faith, and faith alone, embrace,

Believing where we cannot prove. . .

We have but faith; we cannot know,

For knowledge is of things we see;
And yet we trust it comes from thee,
A beam in darkness; let it grow.
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While some of the perplexed merely voiced their despair, others
acted. The Wesley brothers, Cardinal Newman, and the leaders of
the Oxford Movement saw the return to religious orthodoxy as the
only salvation for civilization. The motivation for their actions as
well as for those of the other religious movements of the eighteenth
and nineteenth centuries can be best understood as a reaction against
mathematical and scientific influences.

Many of us may regard the eighteenth-century trend to atheism
as an evil. But one concomitant of the trend, the rise of tolerance
and free thought, has been a superlative good. No one can read the
history of the medieval and early modern periods without being
struck by the power the religions wielded. In the name of God men
were kept poor, dirty, and uneducated; men were trampled upon,
tortured, burned, and killed; independence of thought and action
was discouraged, repressed, or stifled.

The history of persecution for religious differences, which was by
no means confined to the acts of Christians of the Renaissance, is
indeed a horrible and shameful segment of human history. Men
who had only their own faith to support their religious beliefs dared
to murder dissenters by the most ingenious and devilish tortures:
the boot, the rack, public whippings, slow fires, brandings, and nails
driven into the body. Long and hard must these bigots have pon-
dered to have been able to invent means of torture so ‘ingenious’
that they warrant the museum displays now given to them. Relying
only on private judgment men dared to affirm their exclusive access
to truth and to compel public acceptance by fire and sword. Mon-
taigne described the situation with nice irony: ‘It is setting a high
value on one’s opinions to roast men on account of them.

Toleration is not the direct contribution of mathematics. Rather
the movement owes its birth to the rationalistic spirit of the seven-
teenth and eighteenth centuries. The triumphs of human reason in
the form of universal mathematical laws, however, constitute the
fiber of rationalism. Moreover, mathematics, which stands or falls
on the most rigorous reasoning man is capable of, is diametrically
opposed to authority, blind faith, miracles, and the unreasoning
acceptance of ‘truths.” Finally, science, which teaches observation of
nature, the continual verification of its conclusions, and a receptive-
ness to any theory that fits the facts even though it have the seeming
wildness of the heliocentric and relativistic theories, rests largely
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upon mathematics. This body of learning has, therefore, contributed
vitally, if in some respects indirectly, to the propagation of a benefi-
cent spirit.

The war between free thought and religion was declared in the
days of Copernicus. The dust of battle is not yet fully settled but
we have at least reached the point of recognizing the importance of
freedom of worship, free speech, free press, and free inquiry. For-
tunately, ‘Liberty and not theology is the enthusiasm’ of our age.

One more freedom was gained through the mathematical accom-
plishments of the Newtonian era—freedom from superstition. Most
people in Western civilization are now convinced that the course
of nature cannot be affected by mysterious devils, spirits, or ghosts,
by incantations, or by missteps of human beings. Conviction of the
sway of natural law has practically abolished the belief that certain
trivial acts of man can insure good fortune or prevent calamities.

It is not usually recognized and seldom acknowledged that re-
ligions evolve. There is, however, no question but that the rise of
rationalism has had salutary effects on religion itself. Religion no
longer pre-empts the domain of science. Consequently, the work of
mathematicians and scientists is relatively unhampered and the find-
ings of science are recognized as the best source of our knowledge of
nature. Theology and science are now regarded by religionists as
mutually compatible and as reinforcing each other, while the con-
quests of science are accepted as a basis for rational theological
speculations. Nowadays theologians repeat the very arguments ad-
vanced by Newton and Leibniz to prove the existence of God, and
the services rendered by science in this demonstration are freely
acknowledged. The mathematical laws of nature are held forth as
evidence of a harmoniously designed universe, with God as the
creator and lawgiver. As more and more laws are discovered science
is hailed as revealing God to an ever-increasing degree.

Before the eighteenth century, moral laws had generaily found
their sanction in religion. The weakening and denial of religion
left these laws suspended in a vacuuin. Moreover, the materialistic
emphasis on worldly pleasures opposed the very substance of Chris-
tian ethics, and determinism vitiated the doctrines of sin and salva-
tion, for it argued that the will is bound fast in the determined
behavior of matter. Since, according to this view, man is not a free
agent, he is not responsible for his actions. The denial of sin in turn
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re-opened the question of why evil exists on this Earth, a problem,
incidentally, as acute for the rationalists as for the theologians. Chris-
tendom had accounted for evil by the story of man’s sin and fall,
but this ‘explanation’ collapsed with the collapse of sin.

Under rational scrutiny many ethical doctrines certainly seemed
baseless. Once the nature of God was examined with scrupulous care
a question arose—why should He favor virtue rather than vice? The
cultured Third Earl of Shaftesbury ridiculed the theory that virtue
is the product of a bargain with supernatural powers who would re-
ward good and evil. Even more radical was La Mettrie’s conviction
that pleasure is not a sin but an art. Sensual pleasures in particular
were approved.

Could the moral code survive religion? Some tentative answers
were proposed by eighteenth-century thinkers. Reason itself was
urged as the guide to conduct. Locke, for one, believed that the
principles of morality were capable of mathematical demonstration.
Follow reason, the God within us, in order to determine the proper
conduct. We have reason enough to guide us provided we take the
trouble to be reasonable. Of those who urged the application of rea-
son some added that man has a moral sense which operates in har-
mony with his reason. This natural sense of right and wrong is
independent of religion. It is not necessary to fear God or seek
rewards in heaven. In fact such a motive is unchristian. The moral
sense enables man to avoid evil and choose the good just as his
aesthetic sense predisposes him to beauty.

Others, following the eighteenth-century identification of reason
with nature, said we should study man in his natural state and imi-
tate him. Hence the ways of primitive people, known to Europe
through the great explorations, were held up as ideals. Because
Magellan had written that the Brazilians had no civilized vices and
lived to be 140 years old, the Brazilian way of life was extolled. Since
the Chinese way of life was more primitive than the European, it
followed that the Chinese were more moral and that their society
was an exemplary one. And when Bougainville, the explorer, pub-
lished a glowing account of the life of the Tahitians, some Euro-
peans became convinced that imitation of these people would restore
the Garden of Eden. Even the Jesuit missionaries praised the virtues
of unspoiled natural man, the noble savage.

Many philosophers decided that the position of ethics in relation
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to religion should be the reverse of the historical one. Locke said
that the Scriptures confirm the moral laws which reason discovers.
Kant, among others, believed that our morals are the basis for re-
ligion rather than the other way around. The Bible is valuable only
in so far as it coincides with and supplements the moral code, and
religion is useful only in so far as it sugar-coats the moral pill man
must swallow in order to live as a decent member of society. Chris-
tianity becomes, in his view, no more than an ‘admirable auxiliary
to the police force.’” Matthew Arnold expresses a similar view in
evaluating religion as ‘morality tinged with emotion.’

The code of ethics was so devastated by the weakening of religion
that it required complete rebuilding. Mathematics made amends by
providing a plan. A new Euclid was born who wrote the moral laws
for all of society. This story, however, must be reserved for a later
chapter.



XVIII

The Newtonian Influence: Literature and
Aesthetics

All Nature is but Art, unknown to thee;
All Chance, Direction, which thou canst not see;
All Discord, Harmony not understood. . .

ALEXANDER POPE

During his travels in Laputa, Gulliver encountered several profes-
sors engaged in projects to improve the language of the country. One
project was to shorten discourse by cutting polysyllables down to
one syllable and by leaving out verbs and participles because in
reality all things imaginable are but nouns. Another sought to dis-
pense with all words whatsoever simply by having people carry ob-
jects about with them to exhibit instead. Though this latter plan
was advocated as a great boon to brevity and even health, the women
of Laputa objected because it did not allow them to use their
tongues.

In this passage, as well as in numerous others, Jonathan Swift used
his strongest weapon—satire—to ridicule the thoroughgoing influence
on literature exercised by the mathematics of his day. Just as the
successful businessman in twentieth-century America has become the
authority in our time, so mathematicians, successful in revealing and
phrasing the order in nature, became the arbiters of the language,
style, spirit, and content of seventeenth- and eighteenth-century lit-
erature. The biggest literary figures of the age decided that their
writings were inferior in all respects to the mathematical and scien-
tific works and that prose and poetry could be improved by follow-
ing these examples.

The writers began reconstruction by standardizing the language.
Arbitrary symbols intended to remain fixed for all time were adopted

272
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for ideas just as the mathematicians use x as an arbitrary, fixed sym-
bol for an unknown quantity. The standardization of the English
language could be seen in the constant references to girls as nymphs,
lovers as swains, lawns as dewy, fountains and streams as mossy, and
water as limpid, while particular words were associated ad nauseam.

In further imitation of mathematics, ordinary discourse began to
use abstract concepts. A gun became a leveled tube; birds were a
plumy band; fish were a scaly breed or a finny race; the ocean be-
came a watery plain; and the sky, a vault of azure. The poets in
particular indulged in abstract terms such as virtue, folly, joy, pros-
perity, melancholy, horror, and poverty, which they personified and
wrote in capital letters. Both standardization and the preference for
abstractions stripped the language of concrete, colorful, picturesque,
and succulent words.

The movement toward standardization culminated in one of the
landmarks of the English language, Samuel Johnson's Dictionary.
Johnson undertook to regulate a language which had been ‘produced
by necessity and enlarged by accident.” From a more or less inclusive
explanation of the meanings of words Johnson converted the dic-
tionary into an authoritative standard of good usage and the arbiter
of verbal fashions. By careful distinctions clearly set forth, often with
the aid of quotations, he established exact meanings and proper use
of words. It was his intent that these meanings and usages were to
be fixed for all time just as the word triangle has meant precisely the
same thing for thousands of years.

This change in the concept of a dictionary appears radical in the
history of dictionaries but it was almost to be expected in the
eighteenth century. Johnson set about to do for the English lan-
guage what had already been started in all spheres of activity,
namely, to determine and establish the most reasonable, most effi-
cient, and most permanent standards. Philologists since his day have
learned that despite rules and definitions language is necessarily a
fluid and evolving phenomenon. Words change in meaning from
year to year and from place to place, as the modern dictionary clearly
demonstrates by its inclusion of archaic meanings.

Standardization of language was accompanied by a critical exam-
ination of the efficacy of ordinary language. Jeremy Bentham, dis-
tinguished for his ethical and political philosophy, concerned him-
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self with this problem too. Nouns, he said, are better than verbs.
An idea embodied in a noun is ‘stationed on a rock’; one embodied
in a verb ‘slips through your fingers like an eel.” The ideal language
would resemble algebra; ideas would be represented by symbols as
numbers are represented by letters. Thereby ambiguous or inade-
quate words and misleading metaphors would be eliminated. Ideas
would be associated by the smallest possible number of syntactical
relationships just as all numbers are associated by just the few opera-
tions—addition, multiplication, equality, and so forth. Two state-
ments could then be comparable in the same way that two equations
are—for example, when one equation is obtained from another by
multiplication by a constant. The movement to use symbols for
nouns and connectives, in which Bentham participated, was related
to the Leibnizian plan for the symbolization of language. Whereas
Leibniz sought to facilitate reasoning, Bentham and others were con-
cerned, however, with attaining precision.

The reform of language itself was but a minor mathematical in-
fluence on literature. Style was radically altered. It was well recog-
nized in the Newtonian age that statements in a mathematical dis-
cussion or demonstration are concise, unambiguous, clear, and exact.
Many writers believed that the success enjoyed by mathematics could
be credited almost entirely to this naked and pristine style, and
therefore resolved to imitate it.

In the seventeenth century the Fellows of the Royal Society de-
cided that the reformation of English prose was within the province
of that august body. A committee, including Sprat, Waller, Dryden,
and Evelyn, was appointed to study the language. With furtive
glances at the Académie francaise the committee suggested found-
ing an English academy for the ‘improvement of speaking and writ-
ing.’” It urged the members of the Society to avoid eloquence and
extravagance of expression in the description of their experiments.
They were to reject all ‘amplifications, digressions, and swellings of
style’ and to seek a ‘return to primitive purity, and shortness, when
men delivered so many things in almost an equal number of words.’
They were to use a ‘close, naked, natural way of speaking; positive
expressions, clear senses, a native easiness; bringing all things as near
the mathematical plainness as they can; * and preferring the lan-

* [talics mine.
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guage of artisans, countrymen, and merchants before that of wits
and scholars.’

One of the great intellectuals of the age and its most famous popu-
larizer of science, Le Bovier de Fontenelle (1657-1757), wrote in an
essay ‘On the Utility of Mathematics and Physics,’

The geometrical spirit is not so tied to geometry that it cannot be de-
tached from it and transported to other fields of knowledge. A work on
ethics, politics, or criticism, perhaps even a work of eloquence will be
finer, other things being equal, if it is done by the hand of a geometrician.
The order, the neatness, the precision, the exactness prevailing in good
books for some time may well have arisen in that geometrical spirit now
more widespread than ever.

Men we have met as outstanding mathematicians in preceding
chapters were set up as literary models in the eighteenth century.
Descartes’ style was extolled for its clarity, neatness, readability, and
perspicuity, and Cartesianism became a style as well as a philosophy.
The elegance and rationality of Pascal’s manner, especially in his
Lettres Provinciales, were hailed as superb attributes of literary style.
Writers in almost all fields began to ape as closely as their subject
matter permitted the works of Descartes, Pascal, Huygens, Galileo,
and Newton.

Under such influences numerous changes in prose style took place.
Metaphors were banished in favor of accurate language describing
objective realities. Locke said, in this connection, that metaphor and
symbolism are agreeable but not rational. The pedantic, florid,
scholarly style with complex Latinized constructions was abandoned
in favor of a simple, more direct prose. Banished, also, were impetu
ous flights of imagination, vigorous, emotionally charged expres:
sions, poetic exuberance, enthusiasm, and sonorous and highly sug
gestive phrases. The writer’s job, said Pope, is

more to guide than spur the Muse’s steed;
Restrain his fury, than to provoke his speed.

The concern of writers was to communicate facts in a style that
would accord with the high standards of logical thought. Clarity,
proportion, the architectural instinct for form, rhythm, symmetrical
structure, and cadences, and rigid adherence to set patterns were
qualities of the pew nrose style. Prose became sober, terse, precise,
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and epigrammatic. A demand for easy intelligibility and clarity re-
quired that each phrase or group of words be readily grasped by the
mind. Hence brief sentences became fashionable. Inversion was
frowned upon; within the sentence the order of words was dictated
by the thought. Also, sentences were organized to link with each
other so as to show clearly and at once whence the thought came and
where it went. The aim and law of prose style became the ‘easy in-
telligible intercourse of minds.’

The emphasis on the rational elements in style at the expense of
the emotional fostered the qualities appropriate to fine rhetoric,
reasoning, and narrative, and discouraged the expression of the
strong emotion and passion that inspire great poetry. The Age of
Reason expressed itself, therefore, most characteristically in prose,
the novel, diary, letter, journal, and essay lording it over the lyric
and drama. In fact, the novel pretty much replaced poetry as the
outlet for imaginative writing while the lyric poetry of the age be-
came prosaic, ‘poetized prose.’

Among prose forms satire became a favorite. The worship of
reason made the unreasonable conspicuous and therein writers
found a new theme. Since nature and reason were identified in the
eighteenth century, the ways in which man had departed from the
state of nature, for instance, in his grasping for power, wealth, and
position, were readily singled out and attacked. The supreme satirist
of the age, Jonathan Swift, is still widely read and what he wrote is
still pointed. Each account of what Gulliver discovered in strange
lands is a satire on some phase of the eighteenth-century European
civilization. The puny Lilliputians appear at first to be amusing,
uninformed, and helpless people, and we condescend to laugh at
them until we realize that the joke is on ourselves. Gulliver’s at-
tempts to explain the customs and ways of Europeans to the Hou-
yhnhnms, the elite members of a society of horses, succeeds only in
ridiculing the Europeans.

As we have just seen, the Age of Reason favored prose above
poetry. In addition, the Newtonian spirit forced a sharp separation
between prose and poetry, between what a person thought as a man
of sense and judgment and what he felt as a poet, between knowledge
of nature, on the one hand, and the colors of rhetoric, the devices
of fancy, and the deceit of fables on the other. Prose dealt with
facts, poetry with pleasure and fancy. A man might feel in poetic
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terms but he must think in prose. Thus emphasis on the reasoning
faculty discredited the concepts, images, and values of poetry. Fur-
thermore since truth in the Newtonian age consisted in knowledge
of the clear and distinct mathematical properties of objects and since
these are not the truths of poetry, the latter were rejected as fictional.
In fact, in order to obtain truths men had to exorcise the phantasms
of the imagination. Poetry could at best only decorate and render
agreeable the abstract truths of mathematics and science.

Leading figures deprecated and some actually declared war on
poetry. Locke said that poetry offers merely pleasant pictures and
agreeable visions but these do not conform to truth and reason.
Poetry is not really needed by people who have seen the light of
reason; hence no labor or thought should be expended to examine
the truth in a poem. In fact, the pleasure of poetry would be spoiled
by the application of reason to its contents. He said, in addition,
that if a child has poetic leanings the parents should labor to stifle
them. Newton gave his opinion of poetry by citing his teacher Bar-
row, who said that poetry is a kind of ingenious nonsense. Hume
was more brutal. According to him, poetry is the work of profes-
sional liars who seek to entertain by fictions. Bentham distinguished
poetry from prose by the criterion that in prose all the lines except
the last extend to the margin whereas in poetry some of them fall
short. Poetry, he continued, proves nothing; it is full of sentimen-
talism and vague generalities. The silly jingling might satisfy the
ears of a savage but would make no impression on a mature mind.

Even the poets themselves seem to have been browbeaten into
accepting an inferior status. Dryden wrote in his 4 pology for Heroic
Poetry and Poetic License that we should be pleased with the images
of poetry but not cozened by the fiction. The best that Addison
could say in defense of poetry was that if the material world were
endowed with only those qualities which it actually possesses it would
make a joyless and uncomfortable poetic figure. Fortunately, a
kindly Providence has given matter the power of producing in us
a whole series of delightful imaginary qualities so that man may
have his mind cheered and delighted with agreeable sensations. The
dictator of eighteenth-century literature, Samuel Johnson, damned
with faint praise. Poetry, he said, is the art of uniting pleasure with
truth by calling imagination to the help of reason.

Of course poetry suffered. The opinion prevailed that the art re-
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quired only a limited outlook, a little imagination, and a few rules
to attain perfection. Poets accepted the belicef, too, that their crea-
tions were not truths but just agreeable fictions. They merely catered
to the delight of people; they provided embellishments that appealed
to the fancy but that were not significant as reality even to the poets.

The art sank until it was considered to be only a minor amuse-
ment; then it sought to justify its existence by becoming more philo-
sophic or more useful. Consequently, some poets decided that the
functions of poetry should be didacticism, ratiocination, and argu-
mentation in rhyme. Though it should not stir the feelings, poetry
might refine the passions, moderate the fears, and propose examples
of great virtues.

Not content with reducing poetry to a minor activity, the critics
of the period strove to achieve mathematical objectivity by sup-
pressing all personal or individualistic efforts in this medium. They
ruled, first, that a poet should be something of a mathematician.
Dryden declared: ‘A man should be learned in several sciences, and
should have a reasonable, philosophical and in some measure, a
mathematical head to be a complete and excellent poet. . . The
young American nation also fell under the new influences; in the
words of Emerson:

We do not listen with the best regard to the verses of a man who is only
a poet, nor to his problems if he is only an algebraist; but if a man is at
once acquainted with the geometric foundation of things and with their
festal splendor, his poetry is exact and his arithmetic musical.

Presumably mathematicians would appreciate that art, like sci-
ence, possessed natural laws which could be derived by studying
nature. Dryden said, in fact, that those things which delight all ages
are an imitation of nature. Pope also expressed his belief in natural
laws for poetry. In his Essay on Criticism he says,

First follow Nature and your judgment frame
By her just standard, which is still the same.
Unerring Nature, still divinely bright,

One clear, unchanged and universal light,
Life, force, and beauty, must to all impart,

At once the source, and end, and test of Art.

Curiously enough, to ‘follow nature’ did not mean precisely what
it meant in the physical sciences, that is, to obey nature’s mathe-
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matical laws. Rather, through the historically justifiable association
of the Greeks with nature, to follow her meant to imitate the form
of the Greek classics. Hence, said Pope:

Those rules of old discovered, not devised,

Are nature still, but nature methodized;

Nature, like liberty, is but restrained

By the same laws which first herself ordained. . .
When first young Maro [Virgil] in his boundless mind
A work t’outlast immortal Rome designed,

Perhaps he seemed above the critic’s law,

And but from Nature’s fountains scorned to draw;

But when t'examine every part he came,

Nature and Homer were, he found, the same.

Nevertheless when Pope translated Homer’s Iliad he rendered Pope
and not Homer. As Sir Leslie Stephen points out in English Litera
ture and Society in the Eighteenth Century, “‘When we read in a
speech of Agamemnon exhorting the Greeks to abandon the siege

Love, duty, safety summon us away;
*Tis Nature’s voice, and Nature we obey,

we hardly require to be told that we are not listening to Homer’s
Agamemnon but to an Agamemnon in a full-bottomed wig.” We
need hardly be told, too, that we are listening to the voice of the
eighteenth century attuned to its basic assumptions: the validity of
rationalism and the prevalence of natural law. Thus the rules or
laws of poetry grew out of an identification of nature, the ancients,
and reason, so that to follow one was to follow all. The rules of art
were ‘nature methodized.’

Pope, Addison, and Johnson dictated poetic style in accordance
with the philosophy described above. Strict rules were derived from
a study of the ancients, while Dryden’s translations of the Latin
classics prescribed the laws of metrical translation into English.
Verse, it was thought, could be written by rule; lyric, epic, sonnet,
epistle, didactic verse, ode, and epigram could be built up by ob-
servance of the laws that established their forms; and order, lucidity,
and balance were the goals to be sought in the process. Attention to
grammatical rules and sentence structure was even recommended.
The principles of form in poetry were likened to mathematical
axioms because the axioms determined the form as well as the con-
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tent of the theorems. The heroic couplet won favor because of its
balance and symmetry, and, extreme as this view may seem to us,
because the form was analogous to a series of equal proportions.
The heroic couplet was regarded as the essence of cadenced regu-
larity. Beauty, to the literary critics of the age, consisted in adher-
ence to these strict rules of versification.

The poets adopted a code that was laid down as a series of mathe-
matical propositions, and they followed the rules of the critics metic-
ulously. Great poetry was reduced to correct writing, that is, obedi-
ence to the code. Poetry did become temperate, well regulated, and
intellectual. The poets adopted Pope’s formal and strictly regulated
versification and emphasized such neo-classical ideals as lucidity,
moderation, elegance, proportion, and universality. Decorum, which
meant harmony of theme, matter, and form, was also observed.

Since spirit as well as form was prescribed, the poets, though
often ironic, suppressed feeling. Enthusiasm was abhorred; emotion,
abandon, rapture, and mystical contemplation were outlawed. Imag-
ination was limited severely by reason, coolness, and discretion, in
accordance with Dryden’s injunction that imagination ‘is a faculty
so wild and lawless that like a high-ranging spaniel, it must have
clogs tied to it, lest it outrun the judgment.” Thus the great tragedies
became the tragic victims of the new literary atmosphere of common
sense. The union of heart and head, the synthesis of thought and
feeling, was destroyed.

The conception of poetry as something awful, spiritual, and di-
vine was almost forgotten during the eighteenth century. Those few
writers who persisted in writing the poetry of passion had to smuggle
their works into the literary world either by disguising them or by
pretending to ridicule their very efforts while offering them. Only
a few men, notably Collins, Smart, Cowper, and Blake, some sup-
posedly having traces of insanity in their make-ups, dared to violate
the rules and to write according to their own dictates.

If the spirit of eighteenth-century poetry was impoverished, the
substance, at least, was enriched. The major seventeenth-century
poets of Newton’s youth wrote devotional poetry or love lyrics.
Almost all of them ignored mathematics and science. The few who
happened to touch upon these subjects seemed unaware of the tre-
mendous import of current developments. Still others even ridiculed
mathematics. In 1663 Samuel Butler wrote in Hudibras,
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In Mathematicks he was greater

Than Tycho Brahe, or Erra Pater:

For he, by Geometrick scale,

Could take the size of Pots of Ale;
Resolve by Signs and Tangents streight,
If Bread or Butter wanted weight;

And wisely tell what hour o’ th’ day

The Clock doth strike, by Algebra.

After Newton’s work, ridicule changed to unbounded admiration.
Poetry became filled with appreciation and praise of the new mathe-
matics and science. The writers found reason, mathematical order
and design, and the vast mechanism ~f nature themes so moving that
these replaced the concern for the birth, love, and death of insignifi-
cant man. No or.. was so unrestrained in his enthusiasm for/the new
wonders of the world as Dryden.

From harmony, from heavenly harmony

This universal frame began;

From harmony to harmony
Through all the compass of the notes it ran,
The diapason closing full in Man. . .

As from the power of sacred lays
The spheres began to move,

And sung the great Creator’s praise
To all the blest above;

Famous also are the lines Alexander Pope intended as an epitaph
for Newton's tomb in Westminster Abbey:

Nature and Nature’s laws lay hid in night;
God said, ‘Let Newton be,” and all was light.

Unfortunately it is impossible to survey here the contents of the
great poetry of the Newtonian age. The occasional quotations that
occur elsewhere in the book and the chapter mottoes may perhaps
give some indication of the new subject matter.

However much the critics of the eighteenth century defended
cold, mechanical, and impersonal literature, they could not abolish
the hearts of sensitive people. During the nineteenth century the
realization came that the code for poetry was hopelessly inadequate
and that the images of poetry had worn thin. The rules of descrip-
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tive geometry produce a draftsman’s sketch, not a work of architec-
ture. As Robert Burns put it, in reference to the imitation of the
ancient classics, the poet could not ‘hope to reach Parnassus by dint
o’ Greek.'

Suppression of the spirit had been so drastic that the early nine-
teenth-century poets felt all beauty had been banished. Keats exe-
crated Descartes and Newton for cutting the throat of poetry and
Blake damned them. At a dinner party in 1817 Wordsworth, Lamb,
and Keats, among others, drank a toast that ran: ‘Newton’s health,
and confusion to mathematics.” Though Blake, Coleridge, Words-
worth, Byron, Keats, and Shelley understood what mathematics and
science had accomplished and admired the accomplishments, they
protested nevertheless against what had happened to the essence of
poetry. Shelley said in reference to the restriction of the imagination
that, ‘Man, having enslaved the elements, remains himself a slave.’
Coleridge rejected the mechanical universe as a dead world. William
Blake called reason the devil whose high priests were Newton and
Locke. ‘Art is the Tree of Life. . . Science is the Tree of Death’
He felt that the mechanical account of nature is hopelessly inade-
quate to render nature.

Tiger, tiger, burning bright

In the forests of the night,

What immortal hand or eye
Could frame thy fearful symmetry?

Wordsworth contended that reason alone produces immoral mon-
sters and he attacked scientists who dive rather than soar and who
pry apart nature and soul and thereby miss the grandeur and mystery.

Man now presides
In power, where once he trembled in his weakness,
Science advances with gigantic strides;
But are we aught enriched in love and meekness?

Reaction and revolt, conscious and unconscious, set in against the
material, colorless physical machine that was called nature in the
eighteenth century. Emotions repressed for a century broke the re-
straining bonds and rebelled against the domination of thought and
feeling by mathematics and science. The perfect order of the uni-
verse proclaimed in the eighteenth century was declared to be an
illusion, for mysteries and contradictions unresolved by reason were



THE NEWTONIAN INFLUENCE: LITERATURE AND AESTHETICS 283

still there. Poets asserted the importance of the senses, feelings, and
man’s own consciousness. Nature, they said, is to be lived with rather
than apprehended through the inadequate mathematical account
given by scientists. Let us enjoy nature directly, said Wordsworth,
rather than indulge in rationalistic orgies.

Great God! I'd rather be
A pagan suckled in a creed outworn;
So might I, standing on this pleasant lea,
Have glimpses that would make me less forlorn;

Poetry was delivered from the fetters of the mechanical tradition.
Emotions were revived and expressed; myth and symbol were re-
vitalized. Imagination was set above reason or, by some, proclaimed
as the highest form of reason since it supplied intuitive truths. The
poet was enjoined to be more than a rational commentator. He was
directed to exercise his own genius and to express the deity who
resided in his breast. By the bond between nature and the soul of
man the dead world might be brought to life and enjoyed directly.

Paradise, and groves
Elysian, Fortunate Fields—why should they be
A history only of departed things,
Or a mere fiction of what never was?
For the discerning intellect of Man
When wedded to this goodly universe
In love and holy passion, shall find these
A simple produce of the common day.

The universe is not cold but active and capable of being molded by
the power within man. Poetry records the ennobling action, and the
poet’s spirit transforms the inanimate world into life. Therefore am
I still, said Wordsworth,

A lover of the meadows and the woods,

And mountains; and of all that we behold
From this green earth; of all the mighty world
Of eye, and ear—both what they half create,
And what perceive; well pleased to recognize

In Nature and the language of the sense,

The anchor of my purest thoughts, the nurse,
The guide, the guardian of my heart, and soul
Of all my moral being. . .
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Knowing that Nature never did betray
The heart that loved her;

Thus nature remained the major theme of the poets but it was
nature suffused with feeling, alive and vibrant, rich in color, ap-
pealing to the senses, and mysterious, rather than nature confined
in the chains of abstract laws. The poets of the nineteenth century
chose the concrete experiences of pature, ‘sensations sweet, felt in
the blood and felt along the heart.” They enjoyed the sounds, light,
smells, and sights of life itself. Sunrise and sunset bedazzled the
mathematical analysis of light; the living fire of the sun overpowered
its gravitational attraction of other masses; and the wild west wind—
‘the breath of autumn’s being,’” the uncontrollable spirit moving
everywhere, and the wakener of the blue Mediterranean—swept away
the regular, mechanical motion of the air molecules.

Though the romantic poets rebelled, they did not free themselves
completely from the chains that bound down their spirit. In fact,
the progress in mathematical and scientific thought made during
the nineteenth century reinforced the conceptions of the universe so
ardently advanced by the cighteenth-century rationalists and, of
course, the poets were keenly aware of this fact. When their passion-
ate outbursts had subsided somewhat they again faced the problem
of the meaning of the universe. Throughout the nineteenth century
they meditated upon and were torn between the account of nature
furnished by mathematics and science and the account furnished by
the senses. Matthew Arnold spoke for his contemporaries,

. . . for the world, which seems

To lie before us like a land of dreams,

So various, so beautiful, so new,

Hath really neither joy, nor love, nor light,

No certitude, nor peace, nor help for pain;

And we are here as on a darkling plain

Swept with the confused alarms of struggle and flight,
Where ignorant armies clash by night.

The conflict between heart and mind is still the major theme of
poetry. The more that reason has accomplished, the more troubled
have the poets become.

Literature was not the only art to be strongly influenced by the
flourishing and almost domineering mathematical spirit of the New-
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tonian age. Eighteenth-century painting, architecture, landscape gar-
dening, and even furniture design became subject to rigid conven-
tions and explicitly set standards. The precepts of the painter Sir
Joshua Reynolds illustrate the artistic temper of the times. He
stressed fidelity to the object painted, subservience of color to idea,
and the sacrifice of details to the general and everlasting elements.
Moreover, the painter was asked to address himself to the mind and
not the eye. In architecture and the minor arts, order, balance, sym-
metry, and strict adherence to well-known simple geometrical forms
ruled the day. Art academies formed on the pattern of the successful
scientific academies promulgated the criteria of art and exerted great
influence in setting and in securing adherence to the fashion. Unfor-
tunately, our brief survey of the Newtonian influences does mnot
permit extensive excursions into the history of these arts.

Following the changes in the character of literature, painting, and
the other arts came the change in the philosophy of aesthetics, which
rationalized and justified the new attitudes. The new thesis of aes-
thetics was that art like science was derived from the study and imi-
tation of nature and hence, like nature, was susceptible to mathe-
matical formulation. According to Sir Joshua Reynolds,

It is the very same taste which relishes a demonstration in geometry
that is pleased with the resemblance of a picture to its original and
touched with the harmony of music. All these have unalterable and fixed
foundations in nature.

Moreover, said Sir Joshua, the essence of beauty is the expression of
universal laws.

Just as observation had produced Kepler's laws, so the study of
nature would reveal the laws of art. Some, however, believed that
reason alone, independently of observation, could deduce by the
a priori geometrical method the mathematical laws of aesthetics, for
beauty like truth is apprehended by the rational faculty.

And so men studied nature or applied their rational faculties to
reduce art to a system of rules, and beauty to a series of characteriz-
ing formulas. Precepts for attaining beauty were laid down, and
analyses were made of the nature of the sublime. It was expected
that the search for beauty in nature would produce not only an
abstract ideal of beauty but its chief characteristics. With this knowl-
edge, beautiful works could then be created almost at will, though
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only by observance of the rules of art so discovered. Unfortunately
great art is still not being made on a mass-production basis; perhaps
this is because no modern industrial tycoon has capitalized on the
findings of the eighteenth century.

The last three chapters have given some indication, it is hoped,
of the revolution in culture caused by Newtonian mathematics.*
At the time of Newton’s death the changes were already immeasur-
able and the impress was just beginning to be exerted. The implica-
tions and amplifications of Newtonian mathematics are still shaping
our thoughts, as well as our mode of life. Indeed the eighteenth-
century Age of Reason marked merely the inauguration of an essen-
tially modern culture as opposed to an earlier ecclesiastical and
feudal one.

In general the accomplishment of Newton and his contemporaries
was to initiate a vast intellectual inquiry into the nature of the
world, man, society, and almost every institution and custom of man.
The age passed on to its successors the ideal of general, all-embracing
laws. It also launched our civilization on a quest for omniscience,
stimulated the desire to organize thought into systems built on the
mathematical pattern, and instilled a faith in the power of mathe-
matics and science. The greatest historical significance of the seven-
teenth- and eighteenth-century mathematical creations is that they
animated the rationalistic spirit that has suffused almost all branches
of our culture.

On the basis of the striking successes achieved by Newtonian
mathematics and science in the fields of astronomy and mechanics,
the eighteenth-century intellectuals asserted the conviction that all
of man’s problems would soon be solved. Had these men known of
the additional marvels science and mathematics were soon to reveal,
they would have been even more unreserved, were that possible, in
their expectations. It is now evident that these thinkers were in-
dulging in unwarranted optimism. Their conviction, however, was
prophetic at least to the extent of a half-truth, for mathematics and
science did go on to re-make the world if not to solve all its prob-
lems. Even in those domains where very little progress has been
made toward the solution of basic problems, the ideals of the Age of
Reason still provide the goals and the driving force.

* See also the chapter called “The Science of Human Nature.



XIX

The Sine of G Major

Music is the pleasure the human soul experiences from
counting without being aware that it is counting.

GOTTFRIED LEIBNIZ

It may have been, to improvise on history, that Pythagoras spent
many an hour, seated in the shade of his native olive trees, plucking
the strings of a lyre. In some such way he discovered that the pitch
of a sound from a plucked string depends on its length and that har-
monious sounds are given off by strings, the ratio of whose lengths
are simple whole numbers. From the time of Pythagoras, the study
of music was regarded as mathematical in nature and grouped with
mathematics. This association was formalized in the curriculum of
the medieval system of education wherein arithmetic, geometry,
spherics (astronomy), and music comprised the famous quadrivium.
The four subjects were linked further by being described as pure,
stationary, moving, and applied number, respectively.

During the many years from the age of Pythagoras to the nine-
teenth century, mathematicians and musicians alike, Greek, Roman,
Arabian, and European, sought to understand the nature of musical
sounds and to extend the relationship between mathematics and
music. Systems of scales and theories of harmony and counterpoint
were dissected and reconstructed. The climax to this long series of
investigations, from a mathematical standpoint, came with the work
of the mathematician Joseph Fourier, who showed that all sounds.
vocal and instrumental, simple and complex, are completely de-
scribable in mathematical terms. Because of Fourier’s work not even
the elusive beauty of a musical phrase escapes submission to mathe.
matical formulation. Whereas Pythagoras was content to pluck the

strings of a lyre, Fourier sounded the whole orchestra.
287
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Though joseph Fourier, born at Auxerre, France, in 1768, did
exceedingly well as a student of mathematics, he set his heart on
becoming an artillery officer. When he was denied a commission
because he was the son of a tailor, he reluctantly turned to study
for the priesthood. He abandoned this career when his mathematical
ability won for him a professorship in the very military school he
had attended, social status being unnecessary for so lowly a position.

It was in 1804, after years of political and scientific service to
Napoleon, that he presented to the French Academy a theorem of
unprecedented importance for the progress of the physical sciences.
This theorem advanced the mathematical mastery of the motions
of the air waves as much as Newton’s work had forwarded the study
of the motions of the heavenly bodies. Evidently the nineteenth
century was rushing to fulfill the grandiose expectations of the
eighteenth.

We shall now see how Fourier’s work made possible a thorough
mathematical analysis of musical sounds. Suppose a violinist stands
on the stage of a large theater and draws his bow over the strings of
his instrument. Some of the notes he plays sound for only a fraction
of a second; others are long drawn out; some are loud; some are
soft; some are high pitched; others, low. People seated a hundred
feet away hear all these sounds exactly as they are played. What hap-
pens physically when the violinist plays and how does his music reach
the audience?

By way of explanation let us consider first the simple sound given
off by a tuning fork. If a prong of a tuning fork is struck, the fork
will oscillate very rapidly. As the prong moves to the right for the
first time it crowds together the air molecules alongside (fig. 53).
This crowding is called a condensation. Because air pressure tends to
equalize itself the crowded air particles move farther over to the
right where there is not so much crowding. There the process is
repeated and the condensation moves still farther to the right.

In the meantime, however, the prong has moved back to the left
beyond its original position. This leaves a comparatively vacant re-
gion in the prong’s former position. The air molecules situated to
the right of this region rush into this less crowded space, thereby

-eating another rarefied region in their former position. The mole-
cules farther over to the right now move to the left into this rarefied
region, and so on. If we call the creation of a rarefied region a rare-
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faction, we can say that what is now happening is that a rarefaction
is moving to the right, away from the prong. Each movement of the
prong to the right and to the left sends a condensation and rarefac-
tion to the right.

We have considered the motions that take place to the right of the
prong. Actually, condensations and rarefactions move off in all di-
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Figure 53. Motion of molecules of air due to a vibrating tuning fork

rections. When these condensations and rarefactions reach our ear-
drums, the vibrations they induce there cause the sensation of a
sound.

It is important to notice that the air molecules do not move from
the tuning fork to the ear. Each molecule moves back and forth in a
limited region around the position it occupied before it was dis
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Figure 54. Motion of a typical molecule of air

turbed. What is transmitted is the succession of condensations and
rarefactions, and these constitute the sound wave.

Strictly speaking, all the air molecules in a particular region do
not move in exactly the same way; it is the net effect of their collec-
tive movements, however, that interests us. This can be described in
terms of the motion of a typical molecule. Suppose this molecule is
originally at O (fig. 54). A condensation causes it to be displaced to
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the right to 4. The ensuing rarefaction then causes it to move back
past its original position to B; the next condensation causes it to
move back to O. It has now made one complete vibration. Without
stopping at O, however, the molecule goes through the whole set of
motions again and again under the successive impulses arising from
the tuning fork. Thus the displacement of the molecule from its
original position varies continually with the time during which it
moves.

DISPLACEMENT
IN INCHES

001|— /_\ /_
.OOOI ______ v ¢ \/R TIME

Figure 5. Graph of displacement versus time of a typical molecule of air

The movement of the typical air molecule is vividly shown by a
very delicate instrument called a phonodeik. When a sound is pro-
duced near this instrument it records the air vibrations in the form
of a graph which pictures the displacement of the typical air mole-
cule. The molecule moves back and forth along a straight line. The
graph exhibits the displacement from the original rest position as a
vertical distance, however, while the horizontal axis on the graph
shows the time elapsed from the commencement of the motion. The
portion of the curve from O to Q (fig. 55) represents the motion of
the typical molecule during one complete vibration of the tuning
fork; that from Q to R, the motion during another complete vibra-
tion; and so on. If the tuning fork is struck so as to cause the typical
air molecule to move a maximum of .0o1 inch first to one side of its
original position and then to the other, the phonodeik records a
graph with an amplitude, that is, a maximum displacement, of .0o01
inches. If the tuning fork makes 200 complete vibrations in one sec-
ond, so will the typical air molecule; and the phonodeik will record
200 complete portions, such as that from O to Q in one second.
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We have, then, a physical account of how the sound of a tuning
fork is propagated into space. Is it possible to represent this sound
by a formula, and if so, what is gained by such a representation?

The sound of a tuning fork is simple compared with vocal and
instrumental sounds, but for the moment let us set for ourselves the
task of representing this simple sound mathematically. What we seek,
then, is a formula that relates the displacement and time of travel
of the typical molecule, just as a formula relates the distance an
object falls to the time it takes to fall.

The mathematician has the formula ready-made. He has in his
store of relations among variables the formula y = sine x, with whose
properties we can best become acquainted by means of a graph. As
figure 56 shows, the y-values of this function increase from o to 1 as
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Figure 6. Graph of y = sine x

x increases from o to go; as x increases further the y-values decrease
to o, become negative until they reach the value —1, and then in-
crease to o as x reaches the value g6o0. In the interval from x = 36o
to x = 720, the y-values repeat their behavior from x = o to x = g6o.
In each succeeding g60 units of x-values, the y-values again repeat
their behavior of the first g§6o-unit interval. In other words, the func-
tion is regular, or periodic; or, we may say, the cycle of y-values re-
peats itself after every g6o-unit interval of x-values.

The reader may have noticed the word sine here and he may have
recalled its use earlier in connection with the mathematics of Alex-
andrian Greek times. The y-values of the function y = sine x, as x
varies from o to go, are precisely the values of the trigonometric ratio
sine x, as x varies from o0° to go°. During the centuries from Hippar-
chus to the time of the Swiss mathematician Euler, the trigonometric
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ratios, which were originally defined for angles in right triangles,
were divorced from angles and came to be regarded solely as relation-
ships between variables. Thus y = sine x became a relationship be-
tween two variables y and x. During these same centuries this rela-
tionship was broadened so that to each x-value, no matter how large,
a y-value was assigned as shown by figure 56. The formula y = sine x
is then an old foe with a new face that has returned to torment us.
Because of its origin in the ratios introduced for triangle measure-
ment, y = sine ¥ is called a trigonometric function.
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Figure 7. Graphs of y = sine x and y = § sine %

This function dees not quite represent the sound of a tuning fork
but a very simple modification of it does. A little effort will produce
the proper modification. Consider y = g sine x. This formula differs
from y = sine x in that for the same x-value the y-value of the former
is three times the y-value of the latter. Figure 57 shows the behavior
of y = 3 sine x and compares it with y = sine x. We can describe the
curve of y = 3 sine x by saying that it is like the ordinary sine curve
in shape; however, its amplitude, that is, its maximum y-value, is §
units, where the amplitude of y = sine x is 1. Similarly, the graph of
y = astne X, where a is an arbitrary positive number, has the general
shape of the sine curve but has an amplitude of a units.

Another simple variation of the sine function is illustrated by
y = sine 2x. We might suppose that this function is the same as y =
2 sine x and therefore that this function is another example of the
type just analyzed. We shall see in a moment, however, that this is
not the case. The effect of the 2 in the formula y = sine 2x is most
readily appreciated in a graph. Figure 58 shows that in the interval
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from o to 180, sine 2x takes on the full cycle of y-values that sine x
assumes in the interval from o to g6o. By the time x reaches gbo,
y = sine 2x goes through two complete cycles of y-values whereas
y == sine x goes through only one. Therefore the frequency of the
former function in g6o x-units is said to be 2. The amplitude of
y = sine 2 is 1 since the greatest numerical value of the sine of any
quantity is 1.
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Figure 58. Graph of y = sine 2x

We can generalize the result above to the case of the function
y = sine bx where b is an arbitrary positive number. The frequency
of y = sine 2x is 2. Similarly, the frequency of y = sine bx in the
x-interval of g6o units is b—which means that the y-values repeat the
full cycle of changes b times as x varies from o to g6o. As in the case
of y = sine 2x the amplitude of y = sine bx is 1.
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Figure 59. Graphs of y = sine x and y = § sine 2x

A variation of the sine function that differs both in amplitude and
in frequency from the behavior of y = sine x is exemplified by y =
3 sine 2x. The y-values in this function are three times the values
obtained from y = sine 2x for the same values of x. Hence the ampli-
tude of g sine 2x is g, and its frequency in g6o units of x-values is 2
(fig- 59)-
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The results we have obtained thus far can be summarized by the
statement that the function y = a sine bx, where a and b are any
positive numbers, has the amplitude a and the frequency & in g6o
units of x-values.

We are now prepared to represent the sound of the tuning fork
mathematically. A comparison of the graphs we have just been dis-
cussing with the actual graph of the tuning-fork sound suggests what
theoretical reasoning can confirm. The function relating the displace-
ment and time of the typical vibrating air molecule is of the form
y = a sine bx. We have merely to determine the proper a and b to
suit the behavior of the tuning fork.

If the amplitude of the motion of a typical air molecule, when
acted upon by the tuning fork, is .0o1, then this number should be
the value of ¢ in the formula y = a sine bx; and if the tuning fork,
and therefore the typical air molecule, makes 2oo vibrations per sec-
ond, then the graph of this molecule’s motion has a frequency of
200 per second. But the frequency of y = a sine bx is b in gbo units,
or b/g6o in one unit.* Hence b/g60 should equal 200. Then b =
360-200 or 42,000. Therefore the formula that describes the sound
of the tuning fork is

y = .001 sine 72,0004,

wherein we have written ¢ for x to remind us that this variable repre-
sents time values.

Of course very few musical sounds are as simple as those given off
by tuning forks. The sounds from a flute do approximate the simple
ones from a tuning fork, but the flute is the exception rather than
the rule. What does mathematics have to say about the more com-
plex sounds? How does it account for the sweetness of some and the
harshness of otherss Why does the same note given off by both violin
and piano sound different to the ear?

Part of the answer to these questions is learned by observing the
graphs of various sounds. The graphs of all musical sounds—the or-
dinary sounds of the human voice are included in this term—display
regularity. That is, each graph of displacement against time repeats
itself exactly many times a second. This periodicity is exemplified

* The frequency of actual sounds refers to the number of vibrations in one unit of
time, usually a second. The frequency in 360 units is called the circular frequency.
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by the graphs of sounds of the violin and clarinet, as well as by the
graph of the sound of a as in the word ‘father’ (fig. 60).

Sounds that possess this graphical regularity are, on the whole,
pleasing to the ear and are to be distinguished from, say, the noise
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Figure 6o. The periodicity of instrumental and vocal sounds (Courtesy of Day-
ton C. Miller)
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of a tin can being bounced along the street—this noise has a highly
irregular graph. All sounds that possess graphic regularity or peri-
odicity are called, technically, musical sounds no matter how such
sounds are produced.

In ‘graphic’ terms we have, then, the distinguishing feature be-
tween pleasing and displeasing sounds, between musical sounds in
the broad sense and noise. Unfortunately, such a bewildering variety
of musical sounds possesses this feature of regularity that further
analysis and characterization is necessary—and yet this had seemed
impossible until the nineteenth century. Then Fourier entered the
scene and dispelled the confusion.

Stated as a theorem of pure mathematics Fourier’s contribution
seems innocent enough. The theorem says merely that the formula
which represents any periodic sound is a sum of simple sine terms
of the form a sine bx. Moreover, the frequencies of these sine terms
are all integral multiples of the lowest one, that is, twice, three times,
and so on.

To illustrate the meaning of Fourier’s theorem let us analyze one
of the sounds offered to us by an obliging violinist, for example the
one represented graphically in figure 6o above. The formula repre-
senting this graph is essentially *

y = .06 sine 180,000t 4 .02 sine 360,000t 4 .01 sine 540,000t.

We notice first that, in accordance with Fourier’s theorem, the for-
mula is a sum of simple sine terms. Second, the frequency of the first
term is 180,000 in 360 units of ¢, that is, 60 seconds, which is a fre-
quency of 180,000/860 or ;00 in one second. Similarly the frequency
of the next term is 1000 and of the third term, 1500. Therefore, the
frequencies of the second and third terms are integral multiples of
the lowest frequency. The graph of each of these simple sine terms
is shown in figure 61.

And now, what is the physical significance of Fourier’s theorem?
In mathematical language the theorem tells us that the formula for
any musical sound is a sum of terms of the form a sine bx. Since each
such term could represent a simple sound, say the sound of a tuning
fork with the proper frequency and amplitude, the theorem says that

* For the sake of simplicity we have neglected the relatively unimportant matter
of phase.
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each musical sound, however complex, is merely a combination of
simple sounds such as those given off by tuning forks.

The mathematical deduction that any complex musical sound can
actually be built up from simple sounds is physically verifiable.
Experiments show that a vibrating string, as in the piano and violin,
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Figure 61. Graphs of the component sine terms in the sound of a violin

behaves as though it is giving off many simple sounds simultaneously.
Each of the simple sounds can actually be detected by special in-
struments.

Even more remarkable evidence of the composite nature of musical
sounds is furnished by the fact that any musical sound can be dupli-
cated with the proper combination of the simple sounds of tuning
forks. For example, a tone whose quality is practically indistinguish-
able from the quality of the violin tone discussed above can be pro-
duced by sounding simultaneously, with suitable relative loudness,
three tuning forks with frequencies of 500, 1000, and 1500 vibrations
per second. These three tuning forks simultaneously impose their
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own vibrations on a typical air molecule so that their effect on the
air molecules is recorded by the phonodeik as a single graph. If each
of the forks is started at the proper instant the phonodeik will record
the same graph it records for the complex violin sound. It is theoret-
ically possible, therefore, to play Beethoven’s Ninth Symphony (in-
cluding the Choral Ode) entirely with tuning forks. This is one of
the startling implications of Fourier’s theorem.

Any complex sound, then, can be built up by a suitable combi-
nation of simple sounds. The simple tones are called the partials or
harmonics of the sound. Among the partials one is of lowest fre-
quency and this one is called the first partial or fundamental tone.
The tone next higher in frequency is called the second partial and
its frequency is, according to Fourier’s theorem, twice that of the
lowest; the tone next higher in frequency is called the third partial
with a frequency three times that of the first; and so forth.

This resolution of complex sounds into partials or harmonics helps
us to describe mathematically the chief characteristics of all musical
sounds. Each such sound, simple or complex, has three properties
that serve to distinguish it from other musical sounds, namely, pitch,
loudness, and quality. When we speak of a sound as being high or
low we refer to its pitch. For example, the notes of a piano, as they
progress from the left of the keyboard to the right, rise from low
pitch to high. The second property, the loudness of a sound, is im-
mediately understandable. Some sounds are so weak that they are
inaudible; others frighten us by their intensity. Finally, the quality
of a sound is what distinguishes it from other sounds of the same
loudness and pitch. Even when a violinist and flutist produce tones
of the same pitch and loudness, we recognize a difference in quality
because of the differences between the two instruments.

Each of these characteristics, loudness, pitch, and quality, can be
‘explained’ mathematically. The louder of two sounds has a graph
with a greater amplitude. Since the amplitude of the graph is the
maximum displacement of the air molecules conveying the sound,
it follows that the loudness of a sound depends on the maximum
displacement of the vibrating air molecules; the greater the displace-
ment, the louder the sound. This conclusion is readily acceptable,
for we know from experience that the loud twang of a guitar re-
quires a greater displacement of the string than does a gentle strum-
ming.
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Sounds with the same pitch produce graphs having the same fre-
quency, while the graphs of high-pitched sounds have larger frequen-
cles than those of low-pitched sounds. Thus the graph of the sound
known as middle C on the piano has a frequency of 261.6 a second,
and the sound pitched one octave higher has a frequency of 523.2 a
second.

The pitch of a complex sound, or the frequency of its graph, is
always that of the fundamental tone. Consider the formula for the
violin sound as an example. There the partials have the frequencies
500, 1000, and 1500 respectively. This means that the graph of the
second partial will go through two complete cycles while the graph
of the fundamental tone goes through its first one. Similarly, the
graph of the third partial will go through three cycles while the fun-
damental tone goes through its first one. The composite graph, how-
ever, repeats its behavior when and only when the graph of the fun-
damental does, that is, after Y440 of a second. This means that the
air molecules will begin to repeat their behavior after %40 of a sec-
ond. Since it is this frequency that determines the pitch of a sound
we see why the pitch of the complex sound is determined by the
fundamental tone.

The quality of a musical sound affects the shape or form of the
graph. If a sound of the same pitch and loudness is produced success-
ively by a tuning fork, violin, and clarinet, the graphs for the dif-
ferent instruments have the same period and amplitude but differ
in form (cf. fig. 60), while the graphs of different notes on the same
instrument always have the same general shape (fig. 62). This means
that each instrument has its characteristic quality.

The shape of the graph depends, in turn, partly on which partials
are present in the sound and partly on the relative strengths of these
partials. The second partial, whose frequency is twice that of the
fundamental, may be so weak that it has almost no effect on the
sound. Mathematically speaking, the graph of the second partial may
have such a small amplitude that the shape of the graph of the full
sound is hardly affected. For example, in the higher notes of a flute
all the partials except the first are so weak that the composite sounds
are practically simple. In this respect the flute tones are like those
of a soprano voice of similar pitch. The flute is therefore often used
to accompany a soprano in operatic arias and the combination pro-
duces a most pleasing effect. In the sound of a baritone voice the
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partials are generally strongest in the order six, seven, five, three,
eight, and so forth. Such a sound is illustrated in figure 6o, the letter
a there having been uttered by a baritone at a pitch of 159 cycles per

Figure 62. Different notes on the flute (Courtesy of Dayton C. Miller)

second. In some tones of the oboe (fig. 63) the fourth, fifth, and sixth
partials are stronger than the first three. In the sound of the clarinet
shown in figure 6o the eighth, ninth, and tenth partials predominate
after which rank the seventh, first, and third partials.

Figure 63. Tone of an oboe (Courtesy of Dayton C. Miller)

It should now be apparent that not only the general nature of
musical sounds but their structure and chief properties can all be
characterized mathematically. In one stroke of Fourier’s pen an end-
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less variety of sounds—the human voice, the tones of a violin, and
the wailing of a cat—is reduced to elementary combinations of simple
sounds and each of these is, in turn, no more complex mathemati-
cally than a simple trigonometric function. Those dull, abstract for-
mulas, which have endlessly bored high-school and college students,
are really all about us. We give voice to them whenever we open
our mouths and we hear them whenever we prick up our ears.

The nature of individual musical sounds is now clear to us, thanks
to Fourier. But what does mathematics have to say about harmonic
combinations of sounds, about the essence of beautiful musical com-
positions, about the ‘soul’ of music? The answer is a voluminous one,
so that all we can do here is to read the first page.

The most pleasing chords or combinations of tones, as the Pythag-
oreans discovered, are made up of sounds the ratio of whose frequen-
cies are the ratios of simple whole numbers. The major third, for
example, is a pair of tones, or interval as it is called, whose frequen-
cies are in the ratio of 4 to ; the fourth is a pair of tones whose
frequencies are in the ratio of g to 4; and the fifth consists of fre-
quencies in the ratio of 2 to §. No explanation of the ear’s ready
acceptance of these harmonies has gone much beyond the recogni-
tion of the numerical relation between the pitches involved.

Because the ear accepts only certain combinations of notes as har-
monious, the construction of a satisfactory musical scale is a rather
complicated problem. In order to play harmonious chords the scale
must provide tones with the proper frequency ratios. In addition to
this requirement, the introduction of polyphonic music or counter-
point and the desirability of utilizing different keys to achieve dif-
ferent emotional effects impose other requirements on the scale.
Various musicians and mathematicians have attempted to satisfy all
these demands.

Since it is not possible to have an unlimited or even a large range
of frequencies on instruments such as the piano, wherein the fre-
quency of each note is fixed, the difficulties were resolved by the
construction of the equal-tempered scale. The advocacy of this scale
by J. S. Bach and his son, Karl Philipp Emanuel, led to its permanent
adoption in Western civilization.

The equal-tempered scale contains twelve notes; thus, from C, say,
to ¢/, which is one octave higher, there are twelve intervals. The
frequencies of the eleven intermediate notes are fixed so that each
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bears a constant ratio to the one preceding it. Since there are twelve
intervals from C to C’ and the ratio of the frequencies of these two
notes is 2, the ratio of the frequencies of consecutive notes 1s 1.0594,
for (1.0594)'% = 2. Thus each interval in the equal-tempered scale,
called a semitone, is the same. Consequently, any note may be used
as the key of a composition. The intervals that may be formed with
the notes of this scale, however, are not exactly those which have
been found to be the most pleasing. In order to produce the fifth,
in which the ratio of the frequencies of the two notes is § to 2, the
best that can be done on the equal-tempered scale 15 to select two
notes whose frequency ratio is 1.498. The interval of the fourth,
which should call for a frequency ratio of 4 to g, can be approxi-
mated by the ratio 1.335. These differences, seemingly insignificant,
can be detected, nevertheless, by a good ear. Of course, the violinist,
by adjusting the length and tension of his strings, and the singer
need not limit themselves to the frequencics of the equal-tempered
scale. Nevertheless, because the piano is a basic instrument it has
dictated the scale for Western music of the last two hundred years.

The role of mathematics in music cxtends to composition itself.
Masters such as Bach and Schoenberg have constructed and advo-
cated vast mathematical theories for the composition of music. In
such theories cold reason rather than an ineffable, spiritual feeling
supplies the creative pattern.

But subjects such as chords, scales, and theories of composition lie
beyond our present goal. Our survey of the cultural bearings of
mathematics does not permit too long a glance in these directions.
The few remarks just made merely indicate how far mathematics
has penetrated the sphere of music since the age in which it was first
recognized that the music of the splieres could be reduced to math-
ematics.

Of course the mathematical analysis of musical sounds is of great
practical importance. One illustration perhaps will be suflicient to
convince us of this fact. The telephone seeks to reproduce sounds
faithfully. In view of the variety of sounds, this goal appeared at one
time to be almost unattainable with simple physical devices. But
Fourier’s theorem tells us that all vocal sounds are merely combina-
tions of simple sounds of different frequencies. Hence the problem
is simplified at least to the extent of reproducing simple sounds.
Further analysis of the graphs of actual human sounds by means of
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Fourier’s theorem shows that for intelligible audibility only the
simple sounds with frequencies from 400 to gooo per second are
needed. The design of the telephone was directed therefore toward
the reproduction of simple sounds with frequencies lying in the
range just mentioned. Considerable improvement in the quality of
the reproduction was achieved.

The musical sounds of instruments have also been considerably
improved by the application of mathematics. The analysis of vibrat-
ing strings has yielded knowledge useful in the design of pianos; the
analysis of vibrating membranes has been applied to the design of
drums; and similar studies of vibrating columns of air have made
possible extensive improvements in the design of organs. The har-
monic analysis of musical sounds is also used by the piano manufac-
turer when he positions the hammers so that they will suppress un-
desirable harmonics. Mathematics not only aids in the design of these
instruments but, in some quarters at least, mathematics rather than
the ear is the arbiter of perfect design. Many instrument manufac-
turers convert the sounds of their instruments into graphs by devices
analogous to the phonodeik. They then judge the quality of their
product by how closely these graphs correspond to ideal graphs for
the sounds of these instruments.

It is no doubt true, nevertheless, that in so far as the design of
musical instruments is concerned, experience has contributed more
than mathematics. The reverse, however, is definitely the case in the
design of reproducing instruments such as radios, phonographs, talk-
ing movies, and loud-speaker systems. The engineering of practically
all the components of these complex instruments relies heavily on
Fourier’s analysis of musical sounds. Even the layman who becomes
a high-fidelity enthusiast soon learns to speak Fourier’s language.
In view of the many contributions of raathematics to the production
and reproduction of musical ideas the modern music lover evidently
owes as much to Fourier as to Beethoven.

There are philosophical overtones to Fourier’s work. The essence
of beautiful music is, no doubt, more than what mathematical anal-
ysis furnishes. Nevertheless, through Fourier’s theorem this major
art lends itself perfectly to mathematical description. Hence the most
abstract of the arts can be transcribed into the most abstract of the
sciences, and the most reasoned of the arts is clearly recognized to
be akin to the music of reason.



Mastery of the Ether Waves

Mpystery is in the air.
ANONYMOUS

In the discovery of the planet Neptune the nineteenth century
witnessed a considerable addition to our material universe. It has
already been related that the planet was observed after the mathe-
maticians Adams and Leverrier had predicted its existence and lo-
cation. But this addition to our universe, a planet many times larger
than the size of our Earth, caused hardly a ripple in the daily affairs
of mankind. The heavenly spirits of Copernicus, Kepler, and Newton
merely smiled indulgently and murmured, ‘I told you so.’

Not many years later the nineteenth century witnessed another
addition to our physical universe. Like the discovery of Neptune this
one, too, could hardly have been made without the aid of mathe-
matics. But unlike Neptune, this addition was decidedly insubstan-
tial. It weighed nothing, and it could not be seen, touched, tasted,
or smelled; it was and is physically unknown to man. And unlike
Neptune this shadowy ‘substance’ had manifest and even revolution-
ary effects on the daily lives of nearly every man, woman, and child
in Western civilization. It whisked communications round the world
in the flicker of an eyelid; it extended the political community from
the street corner to the planet Earth; it quickened the tempo of life,
promoted the spread of education, created new arts and industries,
and revolutionized warfare. Indeed hardly a phase of human life was
unaffected.

The central character in this second tale of discovery is a Scotch-
man, James Clerk Maxwell, who was born in Edinburgh in 1831 and
was both student and professor at Cambridge. Although even as a
youth Maxwell displayed an aptness for the abstract—his mathemat-
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ical work at school was brilliant and he published his first paper at
the age of 15—he always wanted most to understand the physical
workings of natural phenomena and mechanical devices. As a boy
he inquired constantly, “What'’s the go of that?” For his own satisfac-
tion his theoretical analysis of the structure of Saturn’s rings, an early
piece of work, had to be supplemented by the construction of a
model. It was hardly to be expected that a person so insistent on
physical explanations should achieve his pre-eminence with purely
mathematical reasoning about a most mysterious and physically in-
explicable phenomenon.

In order to appreciate fully the problem that Maxwell faced we
must go back into history a bit. Several thousand years ago a Cretan
shepherd, Magnes by name, noticed that the iron nails in his sandals
and the iron tip of his staff were attracted to a particular type of rock
in the earth. The shepherd had discovered the loadstone or natural
magnet and he had observed the fact that it attracts iron. In Europe
during the twelfth century it was learned from the Chinese that a
piece of loadstone can act as a compass, but the phenomenon of
magnetism was not studied extensively until the Court Physician to
Queen Elizabeth, William Gilbert, investigated its properties. Gil-
bert should be remembered especially for establishing the fact that
the Earth itself is a magnet, and thereby accounting for the behavior
of the compass needle. With all his efforts, Gilbert made little prog-
ress in the direction of understanding the real nature of the attrac-
tion exerted by magnets, and his work had no influence on the super-
stitious attitudes toward the subject. Before and even after his time
people believed the behavior of magnets to be magical; they sup-
posed that this magic power could cure almost every disease and even
reconcile husbands to their wives. The phenomenon of magnetic
attraction is ‘explained’ today by saying that the magnet sets up a
field about it and that iron coming within the field is acted on by
the field.

A very similar and related discovery was made by the Greek scien-
tist, Thales. Thales noticed that a rubbed piece of polished ambex
attracts light objects such as pieces of straw and dry leaves. Appar-
ently the rubbed amber, like a magnet, sets up a field which pualls
certain objects falling within the field toward the amber. For a long
time the phenomena associated with amber and with loadstone were
regarded as the same. It remained for Gilbert to point out differ-
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ences; to distinguish between the two he called the attracting powe1
of rubbed amber electric, which is Greek for amber.

In the late eighteenth century Professor Luigi Galvani of Italy
noticed that a frog’s leg twitches when the ends of an arc of wire
formed by linking two unlike metals touch the ends of a nerve. The
significance of this discovery was appreciated and used by anothex
Italian, Alessandro Volta. Volta realized that the two unlike metals
were producing a force, now called electromotive force, at the ends
of the wire and he worked out a more effective combination of
metals, that is, a battery. By replacing the frog’s nerve with a wire
and by attaching the ends of the wire to the terminals of his battery,
Volta showed that the force could be utilized to make minute par-
ticles of matter flow in the wire. This flow of particles, which were
later identified as electrons, is an electric current. Though neither
Galvani nor Volta realized it, electrons are precisely what appear on
rubbed amber, and it is these electrons that attract particles in other
objects. Volta’s battery made these electrons flow instead of leaving
them bunched up and stationary as they are on rubbed amber.

A most important relationship between electricity and magnetism
was discovered in 1820 by the Danish physicist, Hans Christian
Oersted, who was working at the University of Copenhagen. Using
Volta’s new battery to force electric current through a wire, Oersted
found that the wire acted as a magnet while the current passed
through it, that is, the electric current set up a magnetic field about
the wire. Such a field attracts or repels other magnets as does the
natural loadstone. This discovery was really an accident, but as
Pasteur once wrote, ‘Chance favors only the prepared mind.” Oersted
was worthy of this favoritism and he was able to explore his dis-
covery fully. The French physicist, André-Marie Ampére, then
showed that two parallel wires carrying currents behave like two
magnets. If the currents are in the same direction the wires attract
each other, and if in opposite directions they repel each other.

It remained for a self-educated, ex-bookbinder’s apprentice,
Michael Faraday, who was working in England, and a schoolmaster,
Joseph Henry, of the Albany Academy in New York, to discover the
other essential link between electricity and magnetism and thereby
set the stage for the dramatic entrance of Maxwell. If a wire carrying
current sets up a magnetic field, will not a magnetic field induce
current in a wire? The answer, as these men showed about a hundred
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years ago, is yes, provided the wire is moved in the field of the mag-
net so as to vary the field about the wire.

Let us examine more closely the essence of Faraday’s and Henry's
discovery. Suppose that a rectangular frame of wire (fig. 64) is rigidly
attached to a rod R and that the frame and rod are then placed in
the field of a magnet. When the rod is made to rotate, by the use of
water power or a steam engine, say, the frame of wire will also rotate.
Suppose, too, that the rod rotates at a constant speed in a counter-
clockwise direction and that the wire BC starts from its lowest posi-
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Figure 64. The principle of a generator of electricity

tion. As BC goes from this position toward a horizontal position on
the right a flow of electric current takes place in the wire in the
direction from C to B. This flow increases in strength as BC ap-
proaches the horizontal position and reaches a maximum at that
position. As BC continues upward, the flow decreases in quantity
and vanishes when BC is at the highest position. As BC continues
to rotate, a current again appears in the wire, this time in the direc-
tion from B to C. Again the flow increases in quantity as the wire
rotates and reaches a maximum value for the new direction of flow
when BC is again horizontal. As BC returns to the lowest position of
its path, the flow of current diminishes and finally disappears. This
cycle of changes repeats itself with each complete rotation of the rod.
The appearance and flow of current in a wire that is moved in the
field of a magnet is the phenomenon of electromagnetic induction.

The current generated, like the current caused by a battery, is a
flow of billions of minute, invisible particles of matter called elec-
trons. This electronic flow is caused by a force that appears in the
wire simultaneously with the current and that goes through the same
variations the current does; that is, it rises and falls and then reverses
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itself to rise and fall in the new direction. This force can be com-
pared to the pressure that causes water to flow in a pipe. The electric
current itself can then be compared to the flow of the water.

Both the amount and force of the flow created by electromagnetic
induction vary with time and, since we are dealing with measurable
quantities, we can discover the functional relation involved. The
relation between current and time is certainly periodic since the
sequence of variations repeats itseif with each complete rotation of
the wire frame. It may be too much to expect that in this periodic
phenomenon, as in those we encountered in the study of musical
sounds, the function sine x should serve. But nature never ceases to
accommodate itself to man’s mathematics. The relation between cur-
rent I and time ¢ is of the form

I = a sine bi,

where the amplitude ¢ depends on such factors as the strength of
the magnet, and the frequency b depends on how fast the frame
rotates. If it makes 6o rotations in one second then the value of b,
in view of our discussions of frequency in the preceding chapter, is
60 X 360 or 21,600. The current that furnishes electricity to most
homes goes through 6o complete sinusoidal cycles of change in one
second; for this reason it is called 6o-cycle alternating current.

Electric current, then, can be thought of as a flow of electrons
and it can be represented by a mathematical formula, But how does
the process of electromagnetic induction produce electric currents?
This phenomenon is replete with mystery. Somehow the mere mo-
tion of a wire in a magnetic field induces an electromotive force in
the wire, and this force causes a current to flow. No one knows, how-
ever, how the magnetic field creates its effect, or, for that matter,
how a magnet attracts iron or steel. No material causal agent can be
detected in either phenomenon. In view of our profound ignorance
about the physical nature of fields, an explanation of electromag-
netic induction seems farther away from man’s reach than the distant
stars,

Fortunately, what may be beyond man’s physical reach is never-
theless within his mathematical grasp. By Maxwell’s time, the physi-
cists of the nineteenth century had succeeded in formulating mathe-
matically the quantitative aspects of various electrical and magnetic
phenomena that had been studied over the preceding centuries. The



MASTERY OF THE ETHER WAVES 300

behavior of fields associated with fixed electric charges, such as those
that appear on rubbed amber, and the behavior of the fields that
surround magnets were expressed by two laws, known today as the
laws of static electricity and magnetism. The phenomenon of electro-
magnetic induction, first observed by Faraday and Henry, was ex-
pressed in a third law, now called Faraday’s law. Finally, the be-
havior of magnetic fields that surround wires carrying current, the
study of which had been conducted by Oersted and Ampére, was
expressed in a fourth law named after Ampére. These last two laws
are called laws of electrodynamics because they describe the behavior
of currents or magnetic fields in motion. All four take the form of
differential equations, which are, unfortunately, too complicated to
discuss here. We can, however, consider what Maxwell did with
them.

While working with these laws of electromagnetism Maxwell
made a deduction showing that the laws were inconsistent with an-
other law of mathematical physics known as the equation of continu-
ity. To a mathematician a contradiction is intolerable and Maxwell
sought a resolution of the difficulty. He noticed that the addition of
a new term to Ampere’s law would secure the consistency of the
taws of electromagnetism and therefore decided to add it.

Never one to be satisfied with the mathematics alone, Maxwell !
sought the physical significance of what he had done. He soon saw
that the new term, which represented a changing electric field, had
mathematical properties similar to that term in Ampére’s law which
represented the flow of current in a wire. Boldly Maxwell inter-
preted the quantity he had added. Its properties were those of a
current. On the other hand, the changing electric field with which
it dealt existed in space whereas the previously known currents
flowed in wires. Maxwell thereupon decided that the new term rep-
resented a current or wave flowing through space. Unlike the cur-
rent in wires this space wave appeared to have no material content
nor was the manner in which it traveled physically clear to him,
Nevertheless, convinced by the mathematics, Maxwell affirmed its
existence and coined the term displacement current for it. Further
reasoning showed that such a changing electric field, like electric
currents in wires, must have an accompanying magnetic field. The
combined fields are now known as an electromagnetic field.

Solution of the corrected differential equations of electromag-
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netism showed Maxwell that the electric and magnetic fields, when
properly generated, travel in space, much as sound waves do; at
any one point in space the strength of each field varies sinusoidally
as time changes. The traveling electric and magnetic fields may each
be compared to the wave that moves along a horizontally extended
rope when one end is moved rapidly up and down. Thus Maxwell
made the first of his great discoveries, the existence of electromag-
netic waves.

His next discovery was probably a reward for his audacity. He ob-
served that his corrected equations describing the behavior of elec-
tromagnetic waves in space were the same as the equations previ-
ously obtained by other scientists for the motion of light. Moreover,
his electromagnetic waves possessed the same velocity as light waves.
Maxwell unhesitatingly drew the apparent inference. Electromag-
netic waves are identical in nature with light waves. The identity
obviously works both ways. Light waves must be electromagnetic
waves. Hence the mathematical and physical knowledge already ob-
tained about electromagnetic waves must be applicable to light.
Conversely, knowledge about light could be applied to the study of
electromagnetic phenomena. In other words, two formerly inde-
pendent branches of physics were identified and the stock of knowl-
edge about each was practically doubled.

To complete the physical interpretation of his mathematics, Max-
well had yet to explain what medium carried his newly found waves.
In his day scientists accepted the fact that light waves moved in a
medium called ether, a ‘substance’ which, though never detected
experimentally in any manner, was believed to permeate all space
and all material bodies. In view of the relationship he himself had
established between electromagnetic waves and light, Maxwell as-
sumed that his space waves, too, were propagated by motions of the
ether. So many tasks had already been ascribed to the much abused
ether that one more hardly mattered.

Maxwell’s declaration of the existence of a new physical phenome-
non which had never before been suggested and which could not
be experimentally detected by the scientists of his time was indeed
an audacious step. The most distinguished mathematical physicists
of his day, Hermann von Helmholtz and Lord Kelvin, refused to be-
lieve in displacement currents. But, by definition, genius is not easily
daunted. Convinced of the physical reality of his electromagnetic
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space waves, Maxwell went further and suggested the apparatus that
could produce them. Twenty-three years after Maxwell had deduced
the existence of space waves and ten years after his death, the Ger-
man physicist, Heinrich Hertz, demonstrated the existence of these
waves by generating and detecting them in the very manner Maxwell
had proposed.

Hertz reasoned that Maxwell’s displacement current or changing
electric field should be identical in nature with the fields surround-
ing stationary electric charges or electrons. He therefore devised a
way of making electric charges move back and forth on a wire so that
the field associated with them was also set in motion. When the fre-
quency of the alternating motion of the charges was high enough an
appreciable part of the field moved off into space, just as waves move
out along a rope when one end is moved up and down sufficiently
fast. Some distance away the field acted on stationary electrons in
another wire and caused these to move back and forth. Thus a cur-
rent, which Hertz detected, was induced in the second wire. The
wires Hertz used are the original form of modern antennas—the
transmitting antennas high up on towers of the broadcasting stations
and the receiving antennas that used to be on top of roofs but are
now in the backs of radio sets. Wireless telegraphy, which involves
merely long and short interruptions in the sending of electromag-
netic waves, was just around the corner.

The wireless transmission of voice and music, however, presented
another problem. The mathematical analysis of musical sounds, dis-
cussed in the preceding chapter, had shown the nineteenth-century
scientists that these sounds consist of sinusoidal air waves with fre-
quencies from a few to many thousand per second. Work on the
telephone had demonstrated that these sound waves could be con-
verted into electric currents possessing exactly the same mathemati-
cal properties as the sound waves have. Could these electric currents
representing musical sounds be converted directly into electromag-
netic waves and thus be transmitted through space? This is theo-
retically possible, but for reasons familiar to the radio engineer it is
easier to radiate high-frequency currents of the order of millions of
cycles per second than to radiate the low frequencies that correspond
to vocal and instrumental sounds. Some scheme was needed whereby
low-frequency currents could be converted into or attached to high
frequencies.
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Several such schemes were developed. In use at present is the
system known as amplitude-modulation. The amplitude of a sinus-
oidal high-frequency current, which can be radiated into space easily,

T A
= & (I

il

\_/

AUDIO-FREQUENCY CURRENT

\ﬂnnnmnnl\ﬂﬂmw

\W

N

1,

CURRENT

il

oy

|

|

CARRIER CURRENT MODULATED BY AUDIO-FREQUENCY CURRENT

Figure 65. An amplitude-modulated carrier wave

is made to vary above and below its normal value exactly as does
the amplitude of the sound wave to be sent out. This is done with
suitable equipment at every radio broadcasting station. The result-
ing amplitude-modulated, high-frequency current, or carrier (fig. 65)
is then radiated into space, through which it travels hundreds and
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thousands of miles to receiving sets. Each receiving set ‘removes’ the
carrier, that is, converts the amplitude variations in the carrier to
wire-borne low-frequency electric currents which vary with time pre-
cisely as does the amplitude of the high-frequency current. The
low-frequency currents then operate a loud-speaker whose vibrations
create sound waves. By these processes the very sounds uttered or
played in the radio studio are reproduced in the home just a frac-
tion of a second later despite intermediate transformations which
defy the wildest imaginations.

Actual carrier frequencies for the amplitude-modulated radio
waves of ordinary broadcasting stations range from 500,000 to 1,500,
o000 cycles per second. The man who ‘tunes’ his radio set to a par-
ticular station is adjusting it to receive the carrier frequency of
that station.

In recent years another system of transmitting voice and music by
radio has been explored and put to use, namely, frequency-modula-
tion. In this system the frequency rather than the amplitude of the
sinusoidal high-frequency current is varied in accordance with the
sound to be transmitted. Suppose the frequency of the carrier or
radio wave that propagates in space is 0,000,000 cycles per second
and the sound to be transmitted is a 100 cycle per second note of
amplitude 1. Were the carrier unmodulated, it would of course con-
tinue to oscillate at the rate of go,000,000 cycles per second. But
now suppose that this frequency is varied from go,000,000 to go,-
002,000, back to 90,000,000, then to 89,998,000 and then back to
90,000,000. This sequence of changes in frequency, or the modula-
tion of the frequency, is made to occur at the rate of 100 times per
second, that is, at the frequency of the musical sound. The extent
of the variation in the carrier frequency, namely 2000 cycles, is de-
termined by the amplitude of the musical note. If this amplitude
were 2 instead of 1, the variation in the carrier frequency would be
twice as much or 4000 cycles, so that the carrier frequency would
range 4000 cycles above and below go,000,000, again at the rate of
100 times per second (fig. 66).

Even higher frequencies than those used for frequency-modula-
tion broadcasting are employed in radar sets. The electromagnetic
waves sent out into space vary sinusoidally in strength at frequencies
as high as 10 billion times per second. Such waves are sent out in
short bursts lasting about one-millionth of a second each (fig. 67).
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If these bursts or pulses hit a metallic surface such as an airplane
or ship they are reflected to the sender, who detects thereby the pres-
ence of the reflecting surface.

90,000,000 90,002,000 90,000,000 89,998,000 90,000,000 90,002,000

i /\/\ /

Figure 66. A frequency-modulated carrier wave
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Incredible and staggering as these frequencies are, they hardly
begin to tax the human imagination when compared with the fre-
quencies found in light waves. It was believed even before Maxwell’s
time that light was some sort of wave motion. Maxwell’s mathe-
matical proof that light is electromagnetic in character made it clear
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Figure 67. Radar pulses

that the essential difference between light and radio waves is the
frequency of variation of the ether’s motion.

Light-wave frequencies are of the order of 1 followed by 14 zeros
per second. Specifically, all waves whose frequencies range from 4
times 10 to % times 10* are visible waves, our eyes responding to
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these different frequencies by registering different colors. As the
light received varies from the smallest frequency to the largest in
the range above, our sensations of color, a contribution of the nerves
and brain, change gradually from red to yellow, to green, to blue,
and, finally, to violet. Color in light is thus analogous to pitch in
sound. And just as we combine simple sounds to produce complex
ones, so we can combine simple colors to produce new ones. White
light itself, for example, is not a simple color ‘tone,” but a light
‘chord,” a composite effect of many colors. Thus sunlight contains
all colors from red to violet, the composite effect of which is white
light.

More and more pieces of the electromagnetic jigsaw puzzle were
soon filled in. Ultra-violet and infra-red rays, the former radiation
detectable by its blackening of photographic film and the latter by
its heating effect, were seen to be electromagnetic waves, with fre-
quencies above and below those of light waves. X-rays, first detected
in the last part of the nineteenth century, were also identified as
electromagnetic waves with frequencies even higher than those of
ultra-violet rays. And finally, gamma rays, which issue from radio-
active substances, are also electromagnetic waves with frequencies
still higher than those of X-rays.

The affinity among these various types of electromagnetic waves,
which Maxwell’s work uncovered, is now continually utilized. The
electric lamps in our homes, for example, convert 6o-cycle waves,
which travel along wires, into light waves, which travel in space.
The essential identity of the many types of waves is used most strik-
ingly in the newest miracle of science now invading the American
home-—television. The variations of light in a scene to be broadcast
are transformed into electric currents, which are in turn impressed
upon a high-frequency radio wave and radiated into space. The re-
ceiving set in the home converts the radio wave into electric currents
and the currents into light waves so that the eye sees precisely the
original scene. Thus one form of electromagnetic wave is converted
into another and that into a third; then the sequence of transforma-
tions is reversed. Every time we go to the movies we witness one
type of electromagnetic wave being converted to another. Light pass-
ing through the sound track of film of varying shades of blackness
strikes a photoelectric cell; this device converts the transmitted light
into a varying electric current and the current in turn activates a
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loud-speaker. Thereby the mellifluous words of ardent males ad-
dressed to incomparable beauties waft us into romantic realms.

These practical attainments are indeed spectacular and make
miracles a commonplace. They also have vast and immeasurable so-
cial consequences, some of which were stated at the beginning of
this chapter. The use of the radio for political speeches should suf-
fice to punctuate any remarks about the social import of the science
of electromagnetism.

But there are values in Maxwell’s contribution that dwarf its
incalculable effects on society and on the daily business of living.
Man does not live by bread and political pull alone. He wants to
understand nature and his relation to nature; he means to satisfy
his curiosity about ever-present phenomena such as sound and light;
and he wishes to bring order out of the diverse impressions which
a multitude of events cast upon his senses. Such values are obtained
from mathematical accounts of physical phenomena.

Maxwell’s electromagnetic theory surpasses even Newton’s gravi-
tational theory in embracing a variety of seemingly diverse phe-
nomena in one comprehensive set of mathematical laws. The be-
havior of the grain of sand and the heaviest star can be described
and predicted with Newton’s laws of motion. The invisible electron
and the light of the sun can be described and harnessed with Max-
well’s electromagnetic laws. Electric currents, magnetic effects, radio
waves, infra-red waves, light waves, ulira-violet waves, X-rays, and
gamma rays, sinusoidal waves with frequencies as low as 6o per sec-
ond and as high as 1 followed by 24 zeros are manifestations of one
underlying mathematico-physical scheme. This theory, which is at
once so profound and so comprehensive that it beggars the imagi-
nation, has revealed a plan and an order in nature which speaks
more eloquently to man than nature herself. With it man’s reason,
his sole claim to distinction from the rest of the animal world and
his only basis for belief in his own importance, has secured another
victory. Once more man has grasped with his mind the reins that
direct nature’s prancings.

Electromagnetic theory affords us another illustration of the
power of mathematics to unearth nature’s secrets. It was possible to
conceive of and even to visualize the submarine and the airplane
long before technicians produced working models. The notion of
a radio wave, on the other hand, would hardly occur even in a
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flight of fancy and, were it to occur, would be immediately dismissed
as such. Radio waves, whose physical nature are still not understood,
were discovered, it might almost be said invented, because mathe-
matical reasoning demanded their existence. And science is now sys-
tematically exploring other vast regions of the electromagnetic world
clearly delineated by Maxwell’s broad theory.

It is especially significant that it was not just ordinary mathemati-
cal reasoning which led to the prediction of radio waves. It was,
rather, an insistence on exact reasoning. The mathematician, valu-
ing logical consistency in his equations above all else, does not pass
by the slightest contradiction. Nor does he permit an inadequate
physical understanding limited by fallible and finite sense percep-
tions to deter him from taking the necessary steps to remove that
inconsistency. Imbued with the spirit of exact reasoning the mathe-
matician regards no demand on behalf of exactness as an unnecessary
extravagance. So-called practical men and even scientists and engi-
neers who confuse mathematical rigor with pedantry would do well
to ponder Maxwell’s work.

There is much more we can learn from even this brief survey of
electromagnetic theory. Granted that through it mathematics has
mastered another segment of the physical world. Granted, too, that
radios, motors, optical devices, and X-ray machines designed and
operated in accordance with this theory leave no doubt that the
mathematics is dealing with real phenomena. But where and what
are the physical agents that produce the effects mathematics de-
scribes> What are electrons that flow in wires and cause lights to
glow? What are electric and magnetic fields that attract and repel
objects and interact on each other? In particular, what is this dis-
placement current that travels through space and that is in the air
all about us? What is the ether that carries electromagnetic waves?
Though the greatest mathematicians ‘and physicists have plagued
themselves with these questions, there are no answers. The weirdest
ghosts ever conceived are no less realizable and no less tangible than
the physical accounts concocted for electromagnetic phenomena.
Electrons, fields stationary and moving, and ether are but fictions,
‘shadows of speculations.” Electromagnetic phenomena are as mys-
terious and as awe-inspiring as purported supernatural manifesta-
tions.

Even the man who was most gifted in constructing a physical pic-
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ture of electromagnetic induction, a picture Maxwell himself used
to advance his own thinking, confessed that he was baffled in his
attempt to understand the entire phenomenon physically. In a
letter to Maxwell written in 1857, Faraday asks whether Maxwell
could not express the conclusions of his mathematical work ‘in com-
mon language as fully, clearly, and definitely as in mathematical
formulae? If so, would it not be a great boon to such as I to express
them sor—translating them out of their hicroglyphics that we might
also work upon them by experiment. . . If this be possible, would
it not be a good thing if mathematicians, working on these subjects,
were to give us the results in this popular, useful, working state, as
well as in that which is their own and proper to them?’ Unfortu-
nately Faraday’s request cannot be filled to this day.

In no case is our ignorance of the real world or of its ultimate
nature more shocking than in the phenomenon of light itself. Un-
doubtedly something travels through space when light from a source
such as the sun or an electric lamp strikes our eyes. But what is it?
For three centuries now scientists have seriously and persistently
investigated the nature of light. Experimental evidence supports
two vague, contradictory theories: one, that light is a continuous
wave motion in ether; the other, that light is 2 motion of minute,
invisible particles or corpuscles. Frequent shifts of scientific opinion
from one theory to the other have given rise to a standing joke: the
wave theory prevails on the odd days of the month; the corpuscular
theory, on the even days.

It 1s true that Maxwell insisted on mechanical models of every
phenomenon he investigated. He pictured the flow of electricity,
for example, as the flow of an imaginary fluid and even studied real
fluids to derive mathematical laws that might be applicable to the
flow of electricity. He invented mechanical models involving par-
ticles and gears in order to picture and study the propagation of
electric and magnetic ficlds. But he never forgot that the fluids and
the mechanical models were merely aids to thought and ultimately
he discarded them, although he retained the mathematical equations
they had suggested. When he presented his classic paper ‘A Dynami-
cal Theory of the Electromagnetic Field’ to the Royal Society in
1864, the physical scaffolding he had used to erect the mathematical
architecture was omitted. Many of Maxwell’s successors did retain
the physical models and installed them as truc explanations, prob-



MASTERY OF THE ETHER WAVES 319

ably because they themselves were unable to dispense with the pic-
tures in their own work. The necessity for thinking in terms of a
medium that carries electromagnetic waves soon established to their
satisfaction the ‘reality and substantiality of the luminiferous ether.’
These pictures, however, cannot be taken seriously, for they are in-
adequate and experimentally non-verifiable.

The inability to explain electromagnetic phenomena qualita-
tively or materially contrasts sharply with the exact quantitative de-
scription furnished by Maxwell and his co-workers. Just as Newton’s
laws of motion furnished scientists with the means for working with
matter and force without explaining either, so Maxwell’s equations
have enabled scientists to accomplish wonders with electrical phe-
nomena despite a woefully deficient understanding of their physical
nature. The quantitative laws are all we have in the way of a unify-
ing, intelligible account. The mathematical formulas are definite
and comprehensive; the qualitative interpretation is vague and in-
complete. Electrons, electric and magnetic fields, and ether waves
merely provide names for the variables that appear in the formulas,
or, as von Helmholtz stated the point, in Maxwell's theory an elec-
tric charge is but the recipient of a symbol. The definitive statement
about the physical nature of electromagneatic phenomena was made
by Heinrich Hertz: “To the question, What is Maxwell’s theory? I
know of no shorter or more definite answer than the following:
Maxwell’s theory is Maxwell’s system of equations.’

If physical understanding and the power to reason in physical
terms about electromagnetic phenomena are lacking, what is the
nature of man’s grasp of that phase of reality? On what does he base
his claim of mastery? Mathematical laws are the only means of prob-
ing and mastering this large region of the physical world; of such
mysterious goings-on mathematical laws are the only knowledge
man possesses. Though the answer to these questions is unsatisfac-
tory to the layman uninitiated into these latter-day Delphic Mys-
teries, the scientist by now has learned to accept it. Indeed faced with
so many natural mysteries, the scientist is only too glad to bury them
under a weight of mathematical symbols, bury them so thoroughly
that many generations of workers fail to notice the concealment.

With Maxwell’s work physics took a new turn. Before his time a
mechanical view of nature was not only popular but indeed reason-
ably satisfactory in supplying a physical account of natural phe-
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nomena. For a long time even electricity and magnetism were pic-
tured as the actions of fluids though scientists did not know that they
actually were such. The ether was regarded as a highly elastic solid
and thereby a mechanical account of the propagation of light was
rendered. The introduction of electromagnetic waves and the iden-
tification of light with these waves destroyed the validity of these
physical accounts, however. Scientists began to have grave misgivings
about the whole mechanical philosophy of nature and reluctantly
abandoned it.

Physics thereupon passed from a mechanistic to a mathematical
foundation. Whereas mathematics served previously to represent,
study, and advance the mechanical analysis of phenomena, today the
mathematical account is fundamental. In fact, the mechanical one
has been abandoned except perhaps in very limited areas. The
essence of any modern physical theory is a body of mathematical
equations. Thus differential equations which in Newton’s day were
the servant of physical thought have now become the master.

Though Maxwell’s work subverted the mechanical philosophy of
nature it strengthened the philosophy of determinism which had
grown up along with the mechanical view. To the nineteenth-cen-
tury scientists Maxwell’s work was the crowning achievement of the
project begun by Copernicus, Kepler, and Galileo. Such a vast
number of new phenomena were now subsumed under exact, math-
ematical laws that the mathematical design of the universe could
hardly be doubted. Indeed no cockier group of scientists ever ex-
isted. Fulfillment of all the goals set up by the confident, unbound-
edly optimistic eighteenth-century scientists was the boast of their
nineteenth-century successors.

Maxwell himself was not taken in. He was too shrewd to become
a devotee of his own great achievements. A keener student of meta-
physics than his co-workers he again proved his genius by resisting
the belief in a deterministic universe held by almost everyone at that
time. Maxwell had done some fundamental work on the motion of
molecules in connection with the theory of gases and was disturbed
by the thought that any ordinary body is made up of molecules, each
of which moves with the velocity of a cannon ball and yet never
departs to a visible extent from its mean position. He was led to
make a distinction between stable and unstable phenomena. A rock
rolled along level ground is a stable phenomenon because a little
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push on the rock will produce just a little movement. A rock rest-
ing on the top of a mountain peak is unstable, however, because a
little push might start an avalanche. Similarly, the match that starts
a forest fire, the little word that sets the world fighting, and the
little gemmule that makes us philosophers or idiots are unstable
phenomena. Such unstable factors, or singular points as Maxwell
called them, were to him flaws in the deterministic world. Laws
break down in these instances and effects negligible under other
circumstances can be dominating.

Maxwell cautioned his fellow scientists about the implications in
the existence of singular points: ‘If, therefore, those cultivators of
physical science . . . are led in the pursuit of the arcana of science
to study the singularities and instabilities, rather than the continu-
ities and stabilities of things, the promotion of natural knowledge
may tend to remove that prejudice in favor of determinism which
seems to arise from assuming that the physical science of the future
is a mere magnified image of that of the past.’

The leader of his own generation was actually the prophet of the
next one. Some of Maxwell's own contributions to the theory of
gases helped to prepare the way for the demise of determinism.
The cracks or flaws he saw in this scheme of things soon widened
and the deterministic world fell apart. But this catastrophe, with
its momentous consequences, must await adequate discussion later.
Most unfortunately Maxwell’s own work, of unsurpassed quality in
many branches of mathematical physics, was terminated by death
when he was only forty-eight.



XXI

The Science of Human Nature

The Proper Study of Mankind is Man.
ALEXANDER POPE

“The most useful and the least advanced of all the sciences,” said
Rousseau, ‘is that of man.” This son of a laborer looked about him
and saw nothing but a diseased and corrupt state of human society.
Political injustices, the strong preying upon the weak, luxury for
the few and untold misery for the many, vice, greed, wars, the en-
slavement of peoples by military conquests, and the betrayal of the
masses by their leaders appalled him.

The affairs of man were in sharp contrast to the affairs of nature.
In nature law and order were clearly evident. The planets kept their
appointed paths and never deviated from them. Wherever the physi-
cal scientists probed they found regularity and mathematical laws
that attested to design and to harmonious behavior. Nature was
orderly, lawful, rational, and predictable.

But man was an integral part of the natural order. Was he not,
like the physical world, a creation of God? Did not the current ma-
terialistic philosophy teach that mind and body are part of the
material world? There must then be universal, natural laws of hu-
man behavior. Men, like the planets, must be subject to forces of
attraction and repulsion, so that man’s behavior too should be but
the mechanical resultant of the action of such forces. In like manner
it should be possible to derive economic laws from the interaction
of elementary economic forces. Man’s abuse of his fellow man, the
chaos in political affairs, the widespread want and misery—such evils
seemed characteristic of human relationships only because man had
not sought the natural laws of society. The true laws, once obtained,

could surely point the way to a better life and to institutions that
322
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would be stable and just, because they would at last be in tune with
the ‘natural order.” And if society could be required or persuaded
to obey these natural laws, the ills of civilization would disappear.

There must then be a science of man. Rousseau pointed out, how-
ever, that this science cannot be studied experimentally because it
would take the greatest philosophers to think up the proper experi-
ments and the greatest monarchs to carry them out. Happily such
experiments are not necessary, for the truth may be won by reason-
ing deductively from first principles. Hobbes stated this thought in
his usual forthright manner. Politics, economics, ethics, and psy-
chology must be reduced to exact sciences. Mankind has relied only
on experience as the source of social and ethical knowledge; by this
means, however, we can acquire only prudence, useful as that may
be. But by means of science, Hobbes continued, we may acquire
sapience, which is infallible and which enables us to predict. Science,
to Hobbes, meant just one subject: ‘Geometry is the only science
it hath pleased God hitherto to bestow on mankind.” Kant agreed
that there was a need for a science of society and added that a Kepler
or Newton was wanted to find the laws of civilization.

Thus men arrived at the belief that it was necessary to found the
deductive science of human affairs. Accordingly, the social scientists
set out to identify, isolate, and abstract the universal laws at work
in human relations. Like the detective who confidently expects to
unravel the most complicated mystery by finding la femme, these
social scientists expected to resolve all their problems by finding a
few fundamental laws. Fields of thought formerly considered totally
alien and inaccessible to mathematical analysis were re-examined
with the purpose of duplicating there the accomplishments achieved
in the exact sciences. Wine, women, and song, along with the wealth
necessary to their enjoyment, became the objects of mathematical
investigations. It will be our concern in this chapter to trace the
influence of mathematical thought on the course of these investi-
gations.

Granted the existence of social laws, how could the social scientists
expect to discover them? The example of mathematics supplied the
answer. hey must first find the basic axioms that thought and ex-
perience vouchsafe to be so self-evidently true of human nature that
all scientists would accept them. From these axioms, theorems on
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human behavior would be deduced by the rigorous, impeccable
reasoning used in mathematics.

Then, just as the theorems of mathematics supplemented with the
axioms of motion and gravitation produced mathematical astron-
omy, so the theorems of human behavior combined with special
axioms of ethics, politics, or economics should produce sciences in
these fields. Conclusions in these new social sciences might even be
quantitatively formulated and thus permit the application of alge-
braic techniques for the deduction of further truths.

The search for axiomatic truths upon which the science of human
behavior was to be constructed took on the appearance of a gold
rush. In rather rapid succession there appeared a parade of great
works that analyzed human nature for the purpose of discovering
basic principles. Seventeenth- and eighteenth-century classics on the
subject included Locke's Essay Concerning Human Understanding,
Berkeley’s Principles of Human Knowledge, Hume's Treatise of
Human Nature and Inquiries Concerning the Human Understand-
ing, and Bentham’s Introduction to Principles of Morals and Legis-
lation. James Mill's Analysis of the Human Mind, published in
1829, carried the movement into the next century. In all these works
the authors advanced what they believed to be the axioms of the
science of human nature and, following the deductive method, de-
rived the laws that govern the actions and thoughts of men.

Some of the axioms of human behavior advocated in these works
merit attention not only for their own sake but also because they
indicate the basic assumptions and generative ideas of the age. It was
affirmed that all men are created equal; that knowledge and beliefs
come from sense data; that the enjoyment of pleasure and the avoid-
ance of pain are basic forces determining human behavior; that
human nature responds in well-known and constant ways to cul-
tural and environmental influences; and that men always act in ac-
cordance with self-interest. 'This last axiom was most often empha-
sized as basic and comparable in its universality to the law of gravi-
tation. Though men of the twentieth century might fear that self-
interest is a disruptive force in society, not so the men of the eight-
eenth.

Thus God and Nature fixed the general frame,
And bade self-love and social be the same.
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Private vices were but public benefits. Of course not all of the ax-
ioms above were accepted and advocated by all the theorists, but the
ones stated were the most popular.

It would be rather difficult to survey in a short space the various
deductions made in the science of human nature proper. Fortu-
nately this is not necessary for our purposes. It is sufficient to know
that such a science was erected.

In order to obtain results in the specific fields of ethics, politics,
and economics, the general program called for adding to the broad
science of human nature axioms peculiar to the specific fields. Of
those ethical systems which were developed by the men suffused with
the spirit of reason one in particular has had so much influence, both
directly and indirectly, on our twentieth-century civilization that it
warrants examination in some detail. This system, erected by Jeremy
Bentham (1748-1832), was not merely rational and deductive; it
dared to be quantitative.

If there is such a thing as a mathematical mind, Bentham pos-
sessed «t. He was so extremely logical and exact in his thinking that
he would suspend a whole work and begin a new one because a
single proposition struck him as slightly doubtful. He continually
sought to classify all knowledge, to arrange ideas in their proper
logical relationship—for example by subsuming the particular under
the general-and to analyze all ideas into their constituents. Bent-
ham has been justly described as a codifying animal.

Even his deficiencies, notably in the field of romance, were those
commonly associated with mathematicians. After fifty-seven years of
remoteness from the society of women he decided to marry and
carefully reasoned to his choice. He then proposed by letter to a
woman he had not seen in sixteen years. He was refused. But the
logic of his proposal remained the same, and so after twenty-two
more years, during which he carefully re-examined its impeccability,
he again offered himself to the same woman, hoping, possibly, that
she had learned some mathematics in the meantime and would see
the force of his case. Apparently she was equally sure of her logic, or
intuition, for she again refused.

It was not only with women that Bentham had the courage of his
logical convictions. In an age when the various religious organiza-
tions were still powerful he stated bluntly that all were deleterious
and fought the alliance of Church and State. When he became con-
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vinced of the wisdom of democracy he dared to advocate universal
suffrage and abolition of the monarchy and House of Peers. The
privileged classes were attacked in his Book of Fallacies. Corrupt
individuals, corrupt courts, and dishonest lawyers were also attacked
in his writings; one pamphlet, The Elements of the Art of Packing
(as applied to Special Juries), was directed at the Crown itself for its
practice of fixing juries.

Bentham’s fundamental axiom of human nature, that pleasure
and pain are the realities underlying and determining human ac-
tion, has already been mentiocned. Man continually pursues happi-
ness and retreats from pain. The words plcasure and pain were, of
course, used broadly. Malevolence gives pleasure to some people and
so must be reckoned among the pleasures.

Now a system of ethics in accord with and indeed derived from
the science of human nature must build upon the pleasure and pain
motives. And so Bentham postulated for his ethics that those acts
which increase the happiness of people are right and those which
decrease it are wrong. Since a particular act may please some people
and harm others, he added that, “The greatest good of the greatest
number is the measure of right and wrong.’

Thus far in his development of ethics Bentham echoed and aptly
phrased a then currently prevailing thought. He thereupon pro-
ceeded to explore its consequences and to refine it through the in-
troduction of mathematical concepts. His objective was to measure
pleasure and pain and to ‘maximize happiness.” Toward this end
the Newton of the moral world developed the ‘felicific calculus.’

First, he listed fourteen simple pleasures such as sense, wealth,
skill, and power, and twelve simple pains, for example, privation
and enmity. To each act that causes pleasure or pain a measure can
be assigned. The mathematical value of such an act, said Bentham,
depends on objective factors, namely, its duration, intensity, cer-
tainty, propinquity, purity (freedom from other pleasures and
pains), and its fecundity (tendency to produce other pleasures and
pains). Fach of these factors contributes to the measure of the pleas-
ure or pain produced by the act. One more factor must be consid-
ered in evaluating an act, however. A pleasure or a pain affects
people, and people, being highly complex machines, differ in sensi-
bilities. If, for example, two men have $1000 each and $500 is taken
from one and given to the other, less pleasure is gained by the act
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than pain is incurred, for the recipient’s wealth is increased by one-
third but the loser loses half. Thus wealth is a measure of sensibility
to some acts. Similarly, education, race, sex, character, and other fac-
tors determine the sensibilities of people.

The value of an act can now be computed as follows. The objec-
tive measure of the pleasure it gives is multiplied by the various
sensibilities of the persons involved and then these products are
added. The number obtained is considered to be positive. Then
the pain this same act may induce in people is calculated in the
same manner and considered negative. The value of the act is the
sum of these positive and negative numbers. With this ‘calculus’ we
not only obtain the value of an act but are also able to compare
two courses of conduct.

Practical applications were soon forthcoming. Bentham’s moral
arithmetic was applied by some to decide whether it would be right
to require vaccination against smallpox. Since at that time some chil-
dren died as a result of the vaccination, the procedure was not uni-
versally approved. The proponents of vaccination argued, however,
that if 10 per cent of those inoculated died from the inoculation
whereas 5o per cent of the group would otherwise die from the dis-
ease, then surely the inoculations were warranted, provided the sur-
vival of the larger number would be a good for all of society.

This kind of argument, as well as Bentham’s entire algebraic ap-
proach to morality, may seem to us to carry mathematics into fields
where it has no business. It is certainly true that the measures of
value he projected cannot be readily computed. This deficiency must
be overlooked. ‘Strict logicians are licensed visionaries.” What mat-
ters is that he boldly carried the banner of Reason into realms of
thought previously ruled by authoritarian traditionalism, and that
he sought a rationalistic approach to a system of ethics which served
the common man. Here was a science of ethics founded not on re-
ligious precepts or on rationalizations of existing social patterns but
on the science of human nature. Not the will of God but the nature
of man gave rise to the new ethics. Virtue, in particular, was no
longer to be rewarded by Heaven but was to be its own reward. The
application of Bentham’s philosophy would be desirable even today.

The theorists on ethics, typified by Bentham, had succeeded in
carrying out the basic plan; that is, they had erected logical systems
of ethics by utilizing the laws of human nature and special axioms
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about man’s behavior toward his fellow man. The political theorists
proceeded to do the same. Spurred on by David Hume’s confidence
that ‘politics may be reduced to a science,” they sought axioms for
their particular science and, of course, different schools of thought
chose different axioms. Some, like Hobbes, sought axioms that would
justify absolute monarchy; others, like Voltaire, sought to insure en-
lightened despotism; and still others, notably Bentham, argued for
democracy.

Of the various political theories that were developed, two, at least,
are of incomparable importance for our times, those of Locke and
Bentham. Locke undertook to ascertain the natural origins and rai-
son d’étre of governments, that is, the logical basis for the existence
of governments; the actual history of their rise was irrelevant to his
investigation. His argument began with a doctrine from his famous
theory of knowledge. All men are born with blank minds. Their
character and all their knowledge are acquired through experience.
Since, therefore, the essential differences among men are due to en-
vironment, it is correct to say that all men are born equal. In the
hypothetical, earliest state, which was called the state of nature in
the eighteenth century, all men possessed natural and inalienable
rights, such as liberty, and were guided by the laws of reason. In
order to secure protection of life, liberty, and property men made
a ‘social contract,’ giving to a government the right to determine and
punish offenses against society. When they entered into this contract,
men agreed to be guided by the will of the majority; the government
was supposed to determine that will and act accordingly. Hence if
the rulers, chiefly the legislators, should betray their constituents,
revolt would be justified. Thus a reasoned examination of the nature
of government answered such questions as why it existed, whence it
derived its power, when it exceeded this power, and what could be
done about tyranny.

Nowhere is Locke’s philosophy of government and the rational
approach to it so succinctly expressed as in a famous ‘mathematical’
document of the eighteenth century, which is well known to all of
us and which actually quotes many of Locke’s phrases:

We hold these truths to be self-evident, that all men are created equal,
that they are endowed by their Creator with certain unalienable Rights,
that among these are Life, Liberty and the pursuit of Happiness.—That
to secure these rights, Governments are instituted among Men, deriving
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their just powers from the consent of the governed.—That whenever any
Form of Government becomes destructive of these ends, it is the Right
of the People to alter or to abolish it, and to institute new Government,
laying its foundations on such principles and organizing its powers in
such form, as to them shall seem most likely to effect their Safety and
Happiness.

The argument begins, it will be noticed, with the statement of
self-evident truths, equivalent to the self-evident axioms that are the
foundation of any mathematical system. The document then pro-
ceeds to state facts showing that the king had failed to provide the
people with those rights which, according to the above axioms, gov-
ernments are supposed to secure. Hence, by another of these axioms,
the people were justified in abolishing this government and in insti-
tuting a new one.

The personal views of the writer of the document above went
further. Fach generation, said Thomas Jefferson, should make its
own social contract. He calculated that every eighteen years and eight
months half of the people over twenty-one years of age die. Hence
every nineteen years there should be a new contract and a new con-
stitution.

Far more important than the mathematical form of the Declaration
of Independence is the political philosophy it scts forth. The open-
ing sentence is most pointed.

When in the Course of human events, it becomes necessary for one
people to dissolve the political bands, which have connected them with
another. and to assume among the powers of the earth, the separate and
equal station to which the Laws of Nature and of Nature’s God entitle
them, a decent respect to the opinions of mankind requires that they
should declare the causes which impel them to the separation.

The key phrase is ‘the Laws of Nature.” Here is an explicit expres-
sion of the eighteenth-century belief that the entire physical world,
including man, is ordered by laws of nature. Of course, this belief
was based upon the evidence of design uncovered by the mathema-
ticians and scientists of the Newtonian era. Obviously, since such
laws existed, they must determine the ideals, conduct, and institu-
tions of men. A valid law of government must be a natural law.
Equally significant are the words ‘of Nature's God.” God’s will and
God’s backing have, of course, been.invoked in behalf of many di-
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verse and even opposing causes. Here, however, it is not God’s will
as known to man through revelation or through the Scriptures; it is
the God who speaks through nature. Reason uncovers His will, for
reason, being part of man, is part of nature. In fact, the eighteenth-
century thinkers practically identified ‘right reason’ and nature.

The Declaration was written by a small group of political leaders
who sought to justify revolt from Great Britain. The justification
received the backing of the people because it expressed their beliefs.
As Jefferson himself pointed out, he had invented no new ideas or
sentiments; he had merely stated what everyone was thinking. It was
this widely accepted political philosophy, rather than the Stamp Act
or the tax on tea, that fostered the American Revolution. Indeed both
the American and French Revolutions were widely regarded as tri-
umphs of Nature and Reason over wrong.

Rationalism of the mathematical variety and the doctrine of nat-
ural rights, applied to politics, produced a new philosophy of gov-
ernment and infused men with a determination to revolt against
injustice. But the doctrine of natural rights did not fare too well
in the nineteenth century. Many of the leaders of the revolt, notably
Hamilton, Madison, and John Adams, were concerned more with
the protection of private property than with the rights of the masses.
Moreover, many special pleaders identified natural rights with the
interests of the rising merchant class, which wanted freedom from
governmental interference to make more money, or qualified the
doctrine to mean the natural rights of free men, thereby validating
slavery. In England the natural right of laborers to education was
denied on the grounds that it would make them unhappy with their
lot, make them fractious, and enable them to read seditious pam-
phlets, vicious books, and publications against Christianity. In ad-
dition, because it had inspired the French Revolution, the doctrine
of natural rights was charged with the ensuing evils, such as the
Reign of Terror and the Napoleonic aggrandizements. For all these
reasons the doctrine lost prestige and backing. As a consequence, the
principle of democracy, that governments derive their just powers
from the consent of the governed, lost its theoretical foundation and
the practice of democracy might indeed have suffered. Fortunately,
the philosophy of modern democracy was refounded by Bentham,
who felt the cogency of reason even more than Locke. The new phi-
losophy is called Utilitarianism.
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Bentham had expounded his views on human nature and his sys-
tem of ethics in his Introduction to the Principles of Morals and
Legislation (148g). This same book treated the science of government
and indeed made political science, as distinguished from statecraft,
a branch of moral philosophy. Bentham discarded natural rights and
God’s will and sought a purely rational basis for government. To
him the primary truth or fundamental axiom in the political field
was that a government should seek the greatest happiness for the
greatest number of people. From this basic principle he deduced
many conclusions. Justice is not an end in itself; it is rather the
means to increase the total amount of happiness. Law must consider
the consequences of acts, not the motives, since only the effect of acts
on the happiness of society is important. In penology Bentham con-
tributed the deduction that the law must discourage by penalties acts
that diminish happiness. Since punishment means pain, however, it
is to be inflicted only when it prevents greater pain.

Then Bentham pondered this apparent paradox: rulers naturally
seek their own happiness, but government should seek the greatest
happiness of the greatest number. How can these opposing interests
be reconciled? Only by securing an identity of interests of governors
and governed. This can be accomplished by putting power in the
hands of all. Democracy, then, is the preferred form of government.
To clinch the argument, Bentham appealed to the ‘uninterrupted
and most notorious experience of the United States.” In that country,
he asserted, there was no corruption, no useless expenditure, and
none of the evils found in Great Britain.

Bentham’s illustrious disciple, James Mill, took up the problem
of who should constitute the electorate in a democracy. After elim-
inating voters whose interests are well protected by other voters as,
for example, the wife's interests are protected—so Mill believed-—by
the husband, he concluded that only men over forty should vote.

Bentham may have been somewhat in error about the situation
in the United States but his argument for democracy was very effec-
tive. The average American is a Utilitarian even if he has never
heard the word. Bentham’s greatest good for the greatest number
and Locke’s philosophy of natural rights and the social contract
forged, and were fused in, the American democracy.

We need not consider further the course of political ideologies.
Theorists were not able after all to found a science of government
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as successful as a mathematical theory of the heavens. Perhaps they
did no more than justify and proclaim the political emergence of
the common man. But by rational inquiry they did at least isolate
and phrase the goals, ideals, and slogans of the democratic trend.

The full realization of democracy could not occur until there were
changes in the philosophy and form of man’s economic institutions,
for the man who is politically free but economically a slave enjoys
at best only an illusion of freedom. The great thinkers of the eight-
eenth century already at work at the task of reorganizing all knowl-
edge were soon even more pressed to revamp economic thought by
the approaching Industrial Revolution.

The new science of economics followed the rational, mathemati-
cally inspired lines of the ethical and political theorists. Basic to it
was to be the science of human nature. To this the axioms of eco-
nomics proper were to be added. The deduction of economic laws
would follow readily.

The two leading eighteenth-century schools of economic thought,
the Physiocrats under Francois Quesnay and the English classicists
headed by Adam Smith and later John Stuart Mill, were in agree-
ment about the existence of axiomatic economic truths. They agreed,
also, that eternal and immutable laws rule in economic as well as
natural phenomena. (The word ‘physiocrat’ means the rule of na-
ture.) Hence it was possible to arrive at a natural science of wealth.
The economist must ascertain the laws and proclaim them.

The axioms adopted by these schools of thought are familiar to all
of us and are still, in the main, the dominant views. The individual
acts in his own interest. Equally axiomatic are the rights to liberty,
property, and security, and the proposition that land and (or) labor
are the sole sources of wealth.

From such axioms it was not hard to deduce the theorems of free
trade and unrestricted competition, doctrines incorporated in the
phrase laissez faire, laissez passer. Any interference with man’s normal
and natural efforts to gain a livelihood was interference with God’s
design of the universe and therefore presumptuous. In particular,
government must not interfere with business. Business must be left
to businessmen whose enlightenment would insure the successful
working of the economic system. The government need merely guar-
antee and protect contract rights. The Physiocrats, who believed land
to be the sole source of wealth, advocated a single tax on land; Adam
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Smith, on the other hand, regarded labor as the sole source of wealth
and therefore, though sympathetic with the problems of workers,
preferred a single tax on incomes.

Axioms there were in these economic theories, as well as deduc-
tions in the mathematical spirit, but laws that corrected the economic
ills of society there were not. These economists, however uncon-
sciously, were special pleaders for the merchant and manufacturing
classes. The theorists borrowed what they needed from the rational-
istic attitude of the times merely to build a logical defense of the
laissez-faire doctrine. Indeed as industrialization proceeded apace in
the early nineteenth century, this doctrine failed miserably to miti-
gate the woes of the laboring classes. It merely justified the rich get-
ting richer and the poor becoming penniless. So apparent were the
inequalities and injustices that economists felt impelled to defend
the existence of great masses working in factories at starvation wages.
Their method was again to search for natural laws in order to estab-
lish that it was God’s plan and an inevitability that women and little
children should toil sixteen hours a day.

Thomas R. Malthus found the answer in the laws of ‘population.
The conclusions he sought were so readily discernible that he was
able to write the Essay on the Principles of Population without hav-
ing to cast his eyes on the world about him. The book established
Malthus’ reputation: as a man of authority and earned for him 2
professorship of history and political economy.

Malthus begins thus:

I think I may fairly make two postulata. [As usual the argument begin$
with the axioms.] First, That food is necessary to the existence of man.
Second, That the passion between the sexes is necessary, and will remain
nearly in its present state. . . [In other words, sex is here to stay.]
Assuming, then, my postulata as granted, I say, that the power of popula-
tion is indefinitely greater than the power of the earth to produce sub-
sistence for man.

In the language of John Adams: man has two wants, his dinner
and his girl. But the second want is so intense that he forgets about
the first and rushes into a rash marriage, from which come children.
Hence the multiplication of population far transcends the multipli-
cation of means of subsistence.

Perhaps to gain something of the authority of a mathematical dem-
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onstration Malthus states that population increases in geometrical
progression, while the means of subsistence from a fixed area in-
creases only in arithmetical progression. He estimates that the pop-
ulation doubles every twenty-five years. If other factors are not pres-
ent it will be multiplied in two centuries by 256, whereas in the same
time the food supply will increase by a factor of g.

Malthus realized, however, that actual populations do not increase
geometrically. Why not? The answer is that starvation, disease, vice,
and wars check the increase of populations. These seeming evils are,
in the long run, really beneficial; they are resorts of nature, dreadful
but necessary. Since these happenings are part of the divine plan, no
legislation can alleviate man'’s miserable lot. No society can exist in
which all members can live in ease, happiness, and leisure. Malthus
then emphasized the desirability of teaching restraint so that people
will not have children they cannot support. He would in fact add an
eleventh commandment: “Thou shalt not marry until there is a fair
prospect of supporting six children.’

The justification of wretched social conditions by appeal to nat-
ural laws did not end with Malthus. Another famous economist who
took up the cause was David Ricardo. First, he segregated and labeled
the factors that enter into economic life, namely, capital, labor, value,
utility, rent, wages, profits, and so on. Everything in business, said
Ricardo, followed inescapable, natural laws involving these factors,
and the laws could be deduced from postulates. For example, it was
self-evident that the price of a commodity was determined by supply
and demand. This postulate, applied to the commodity of labor, im-
plied that there was a natural price for labor. If wages were raised
above this level, laborers would have larger families, thereby increas-
ing the supply of labor and bringing about a reduction in wages.
Hence it was pointless to raise wages. Ricardo summed up these con-
siderations in his famous law of wages: ‘“The natural price of labor
is that price which is necessary to enable the laborers, one with an-
other, to subsist and perpetuate their race without either increase or
diminution.” Thus it was natural to Ricardo, as well as to Malthus,
that poverty, distress, and starvation should exist. It was natural, too,
that laborer, landowner, and capitalist should be antagonistic to each
other. All these laws and the conditions they bring about were the
decrees of a far-seeing Providence.

As industrialization proceeded, the ‘science’ of economics failed
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more and more to treat the major problems of society. In fact, it
worked against reform movements, against unions, against remedial
legislation, and against charity so that instead of serving man the
science served his enemies.

The rationalist movement in economics had not spent itself, how-
ever. The wonders of physical science were even more splendid and
the power of mathematics even more evident in the nineteenth cen-
tury than they were in the eighteenth. Yet economic theory, having
adopted the methods of mathematics and science, was in greater con-
fusion. The trouble was, reasoned some economists, that though they
had used mathematical method and had sought natural laws, they
had not used mathematics itself to any appreciable extent. Also, per-
haps they had bitten off more than they could chew at any one time.
It might be better to divide and conquer.

And so the economists attempted a quantitative, deductive zp-
proach to special phenomena instead of to entire fields, piecemeal
investigations instead of wholesale ones. The first objective in each
case was to find the fundamental formula or formulas that governed
the particular phenomenon. The second was to use these formulas
and mathematical techniques to deduce conclusions. In this more
limited type of endeavor the economists were much more successful.

With the publication in 1838 of Cournot’s Researches into the
Mathematical Principles of the Theory of Wealth, there arose a new
school in economic thought, the Mathematical School, which in-
cludes the work of Vilfredo Pareto in our own century. To illustrate
its method of attack on specific problems we shall describe briefly
the work done by two contemporary Americans, Raymond Pearl
and Lowell J. Reed, on the very important problem of population
growth.

For what follows we must keep in mind the fact that we are not
concerned with the population of Middletown in 1g47. We wish to
study population changes in the large, to uncover the fundamental
factors of growth rather than the incidental ones. In accordance with
the mathematical approach to a problem Pearl and Reed start with
reasonable assumptions:

a) Physical conditions set an upper limit, denoted by L, to the popula-
tion of a region or country.

b) The rate of growth of the population is proportional to the existing
population.
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¢) The rate of growth of the population is also proportional to the pos-
sibility for population expansion, that is, to the difference between L
and the existing population.

These axioms suggest to the mathematician a differential equation
which can be solved readily. The result is a general formula for the
growth of population. If y stands for the population of a country ¢
years after a certain fixed date, then the formula is
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Figure 68. The curve of growth

where a and % are numbers whose values depend on the region to
which formula (1) is applied.

The reader need not worry too much about the details of formula
(1). The shape of the curve corresponding to this formula is shown
in figure 68. Known as the logistic curve, it represents in its entirety
what is called a growth cycle. The broken line in figure 68 shows
how population would have to change were it to increase indefi-
nitely in geometrical progression as Malthus asserted.

Formula (1) states a general law of population growth that tells
us how large masses of people ought to behave. But do they behave
that way? With just a little algebra applied to the census figures
of the United States from 1790 to 1910, the values of a and % in for-
mula (1) were determined by Pearl and Reed. Accordingly, the gen-
eral formula for population growth in the United States turned out
to be

197.27
(2) =T F 67.32(2.718)—0318¢’
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where ¢ is the number of years since 1780 and y is the population in
millions. Figure 69 shows the curve corresponding to formula (2).
The small circles represent the actual data; the broken portions of
the graph before the year 14go and after 1910 represent the trend
that formula (2) calls for. We can see that the data for the years 17go
to 1910 lie on the curve of formula (2).
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Figure 69. Growth of the population of the United States

How closely does the formula represent what happened after
19107 Well, according to the formula the population in 1930 should
have been 122,397,000 and the census showed the population to be
122,775,000. For the year 1950 the formula predicts a population of
148,400,000; the census yielded 150,700,000, There seems to be very
good agreement between the theory and the facts.

From formula (2) we can deduce several other interesting conclu-
sions. It says that the upper limit to the population is 197,270,000
and that this figure will have almost been reached by the year 2100.
Another deduction from the Pearl-Reed formula is that the United
States passed the point of its most rapid rate of growth in 1914. The
actual study of population growth shows, then, that a purely rational,
theoretical approach to the problem has produced a formula or law
that represents the facts, at least in their larger aspects.
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Even the more restricted studies in mathematical economics typi-
fied by the work of Pearl and Reed have not always been productive,
largely because correct premises have not been found. Too often
the absence of any real contribution to a problem is hidden behind
an immense mass of mathematical symbolism. There is no doubt,
nevertheless, that the deductive mathematical approach to specific
economic problems has produced some useful knowledge.

Unbounded optimism about the applicability and power of mathe-
matics has led to some bizarre conclusions. One psychologist under-
took to derive a formula for the strength of affections and quite
naturally he began with love. He concluded that love between man
and woman varies directly as the square of the time of association
and inversely as the cube of the distance between them. In this ‘law’
we have a mathematical formulation of the dictum that distance
makes the heart grow colder.

Another somewhat suspect mathematical formula was derived by
the philosopher David Hartley. He offered a vest-pocket edition of
his moral and religious philosophy in the formula W = F2/L, where
W is the love of the world, F is the fear of God, and L is the love
of God. It is necessary to add only this, Hartley said, that as one
grows older, L increases and indeed becomes infinite. It follows then
that W, the love of the world, decreases and approaches zero. This
is the sum and substance of moral truth.

We have been examining the influence of mathematics itself and
of the rational spirit engendered by mathematics on the science of
man. In so far as that spirit buoyantly and over-optimistically pre-
dicted the discovery of natural, universal laws of human behavior
and the consequent solution of all social problems it was, of course,
wrong. Man has on the whole failed to understand and predict his
own behavior. His body, his emotions, and his desires apparently
refuse to obey rigid laws or submit to mathematical regulation. At
least no thinker has as yet built up a quantitative, deductive ap-
proach to an entire social science that would enable us to direct, con-
trol, and predict phenomena in that field. Especially in economics
has success been signally absent.

Why is man his own Achilles’ heel? One reason for the absence of
any science of society was given by Hobbes long ago. ‘For I doubt
not, but if it had been a thing contrary to any man’s right of domin-
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ion, that the three angles of a triangle should be equal to two angles
of a square, that doctrine should have been, if not disputed, yet by
the burning of all books of geometry suppressed, as far as he whom
it concerned was able.’

Perhaps the severest criticism that may be leveled at the eight-
eenth- and nineteenth-century workers in the social sciences is that
they were. too mathematical and not sufficiently scientific. They
wanted to find axioms or general principles from which the science
of politics or economics would readily follow. But very few would,
like Montesquieu, examine society itself, first to check the correct-
ness of their axioms, and later to check their deductions.

Whatever may be the merits and shortcomings of the deductive
approach to the social and psychological sciences, one value is pre-
eminent. The concept itself of a science of ethics, politics, economics,
or psychology and the stimulus to create such sciences stem directly
from the fertilizing rationalism of the Newtonian age. Consequently,
the clear light of reason has at least irradiated fields befogged by tra-
dition, custom, and superstition. In particular, the attempt to be
reasonable about government instead of accepting established insti-
tutions opened men’s eyes to inequalities, injustices, and cruelties.
What Greek rationalism did for mathematics, the mathematical spirit
did in turn for these vague, ill-defined, confused domains of thought:
it ‘raised the edifice of Reason on the ruins of opinion.’



XXII

The Mathematical Theory of Ignorance: The
Statistical Approach to the Study of Man

That which everywhere oppresses the practical man is the
greater number of things and events which pass ceaselessly
before him, and the flow of which he cannot arrest. What
he requires is the grasp of large numbers.

THEODORE MERZ

A fairly good rule of bridge, when there is little strength in the
hand, is to lead from the weakest suit. As our tale will tell, this rule
also works well for scientific ‘hands.” It was applied with remarkable
success by the social scientists when they realized that they did not
hold trump cards.

The tactics of the successful mathematicians and physical scien-
tists may be described briefly as e priori and deductive. By careful
reflection on whatever knowledge of a phenomenon may be avail-
able they obtain broad fundamental principles which serve as axioms.
Deductive reasoning then produces new conclusions and new knowl-
edge. In this ‘armchair’ approach, observation and experimentation
may help to arrive at first principles or to check the deductions but
the mind rather than the senses is the effective agent.

The a priori, deductive approach has, on the whole, failed the
social scientists for reasons that are most pertinent. Perhaps the prin-
cipal one is that the phenomena they study are exceedingly complex.
So many factors are involved even in relatively limited problems that
it has been impossible to single out the dominant elements. How
would we account, for example, for a period of national prosperity?
Such a happy situation depends on natural resources, labor supply,
available capital, foreign trade, war and peace, psychological con-
siderations, and other variables. It is not surprising, then, that no

340
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one appears to have got to the core of this problem. If an economist
should attempt to simplify the problem by making assumptions
about some of the variables involved he is likely to make the prob.-
lem so artificial that it no longer has any bearing on the real situa-
tion.

In many cases the a priori, deductive approach has not been feas-
ible because there is practically no knowledge to work with. The
treatment of some diseases cannot be prescribed because nothing is
known about their causes and there is too little information about
the factors favoring their spread. Vast phases of the chemistry of the
body and of the operation of the brain are total mysteries to biolo-
gists. The mechanism of physical inheritance is almost a sealed book
In these fields analyses can hardly be begun.

In some problems failure to obtain fundamental laws through the
classical method of deduction from axioms is due, paradoxically
enough, to too much information. A gas consists of molecules which
attract each other in accordance with the well-known force of gravity
In addition, the molecules are subject to the Newtonian laws of mo-
tion. If a given volume of gas contained only two or threc molecule
the behavior of the gas could be predicted just as scientists can and
do predict the behavior of the plancts. But a cubic foot of gas
contains 6 X 10% (6 followed by 23 zeros) molecules under ordinary
conditions. Each molecule exerts an effect on all the others in ac-
cordance with the law of gravitation. Obviously, we cannot study the
behavior of this volume of gas by summing up the effects of all the
individual molecules on each other. Some method is needed that
permits treatment of a large number of molecules as one unit.

Another reason for dissatisfaction with the a priori, deductive
approach to social problems was peculiar to the nineteenth century.
The Industrial Revolution introduced large-scale factory production
and led to increasing urban populations. From these developments
there emerged a vast array of social problems connected with popula-
tion changes, unemployment, quantity production and quantity con-
sumption of commodities, insurance against the risks in large-scale
enterprises, and diseases propagated by unhealthy living conditions
in congested districts. These problems crowded upon the scientific
workers so fast that, even had they been able to be solved by the
a priori, deductive approach, more time would have been required
than could then have been spared. This method, even when applied
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by such geniuses as Copernicus, Kepler, Galileo, and Newton, had
required more than one hundred years to produce the laws of mo-
tion and gravitation. It could hardly have been expected to yield
results more quickly in the social and medical fields.

For all these reasons, then, the a priori, deductive approach failed
the social scientists and a new method of attack on their problems
seemed necessary. If anyone stopped to think of how much was
being demanded of a new method for obtaining scientific laws he
could despair of ever finding it. It had to yield results quickly; it
had to summarize the effects of many variables acting in one situa-
tion; it had to succeed where understanding was completely absent;
it had to encompass the effects of uncountable millions of partici-
pants in a phenomenon; and it had to measure the effect of factors
themselves unmeasurable. Despite these inordinate demands a new
approach to scientific problems was created that met them all.

The new approach began with an analysis of the state of affairs.
Here we have phenomena, argued the social scientists, whose essen-
tial nature we do not understand or, if we do understand it, as in
the case of the motion of the molecules of a gas, the understanding
does us no good, and so for all practical purposes we are ignorant.
Hence we do not have the broad fundamental principles that could
serve as the basis of a deductive approach. On the other hand, our
weakness seems to be that we are confronted with a superabundance
of undigested, bare facts which overwhelm us and underscore our
ignorance.

It was at this point that the social scientists recalled the rules of
bridge. Since they did not possess the fundamental principles that
could serve as trump cards, they decided to lead through weakness.
Said they, if we- cannot understand kow rainfall affects vegetation,
let us nevertheless measure what it does. If we do not know why
vaccination prevents deaths, let us tabulate the results of the prac-
tice. If we cannot fathom the complexities of national prosperity,
let us establish a suitable index and chart its rise and fall. If we do
not understand the mechanism of heredity in plants, animals, or
human beings, let us reproduce the species and record what succes-
sive generations reveal. Let the world be our laboratory and let us
gather statistics on what occurs therein.

The mere gathering of statistics was not a new thought, for sta-
tistics are found in the Bible and in older documents. What was
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new was the realization, which seems to have come first to a pros-
perous seventeenth-century English haberdasher, John Graunt, that
statistics could serve as a major weapon in an attack on the prob-
lems of the social sciences. As a pastime Graunt had studied the
death records of English cities and noticed the unvarying percent-
ages of deaths from accidents, suicides, and various diseases. Thus
occurrences which, on the surface, seemed to be the sport of chance
were seen to possess surprising regularity. Graunt also discovered
the excess of male over female births. On this statistic he based an
argument: since men are subject to occupational hazards and war
service, the number of men fit for marriage about equals the num-
ber of women, and so monogamy must be the natural form of
marriage.

Graunt’s work was supported and seconded by his friend Sir Wil-
liam Petty, professor of anatomy and music and, later, army physi-
cian. Though Petty made no observations as striking as Graunt’s
he is especially noteworthy because his point of view was broad. The
social sciences, he insisted, must, like the physical sciences, be quanti-
tative. Speaking of his writings on medical, mathematical, political,
and economic subjects he said: “The method I use is not yet very
usual; for, instead of using only comparative and superlative words,
and intellectual arguments, I have taken the course . . . to express
myself in terms of number, weight, and measure; to use only argu-
ments of sense, and to consider only such causes as have visible foun-
dations in nature.” He gave the infant science of statistics the name
of ‘Political Arithmetic’ and defined it as ‘the art of reasoning by
figures upon things relating to the government.” In fact, he regarded
all of political economy as just a branch of statistics.

When these alert, far-seeing Englishmen spoke for the potentiali-
ties in statistics and when a seventeenth-century priest used statistics
to combat the superstition that the phases of the moon influence
health, new foundations for science were conceived. The period of
gestation lasted about a hundred years. During this time statistics
came to mean quite generally the noteworthy quantitative informa-
tion about a nation; that is, it was considered to be data for states-
men. Very little was done until the early part of the nineteenth cen-
tury to follow up the suggestions contained in the work of Petty and
Graunt, namely, to obtain laws on the basis of data. At this time an
effective group of workers, conscious of the failure of the a priori,
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deductive approach to the social sciences, and equally conscious of
the potentialities in statistics, started to tackle major problems.

Petty and Graunt were the discoverers of a vein of thought. In
order to obtain pure gold, however, it is not sufficient merely to un-
earth the ore, back-breaking though this task may be. The ore must
be sifted, strained, and refined. Similarly, the mere accumulation of
statistics accomplishes little in itself, for only in the very simplest
of problems will conclusions stand forth readily from data. The
extraction of knowledge from large masses of data is accomplished
by mathematics.

About the simplest mathematical device for the distillation of
knowledge from data is an average. Suppose that the employees of
some small business organization receive the following weekly sal-
aries in dollars:

20, 30, 40, 50, 0, Ko, 60, 70, 80, go, 100, 1000, 2000.

What is the average weekly salary? Usually we would take the sum
of all these salaries and divide by the number of salaries. In this
example the sum is 3640 and the number of salaries is 13. Hence
the average is 280. This type of average is called the arithmetic
mean.

It is clear that the mean is not too informative. No one person
actually earns this salary. Moreover, out of thirteen people only two
earn as much or more. The others earn far less. In other words, the
arithmetic mean is not a representative figure it some of the com-
ponent quantities are very large compared to the others. In such
cases other averages may be more informative. Another frequently
used average, called the median, is the datum for which there are an
equal number of cases below and above it. In our example there are
thirteen cases. The median salary, therefore, is 60 because there are
six people earning less and six earning more.

The median does seem to be a more representative figure in this
example but it, too, fails to tell the whole story. If the wages of the
six people below the median were very much less than the above
figures and the wages of the six above the median were very much
more, the median would be the same. Such a gross disparity in earn-
ings would not be reflected in the median figure of 6o. Hence the
median, too, often fails to be a representative figure.

Another average in common use is the mode. This is the figure in
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the data that appears most often. In our example the mode of the
salaries is 50 because the largest number of people earn this salary.
Though this average, like the others, gives some indication of the
distribution of wages it, too, is inadequate. The range of the salaries
above and below the mode is not reflected in this average.

What each of the averages fails to tell us is the distribution of the
data above and below it. The mean does depend on all the values
but we cannot infer the nature of the distribution from it. For ex-
ample, if the two salaries of 1000 and 2000 were changed to 100 and
2900 respectively the mean would still be the same but the nature
of the distribution would be changed. What is neéded is some
measure of the dispersion of data about the average. For this pur-
pose statisticians use a quantity called the standard deviation; it is
denoted by o (sigma). This quantity is computed as follows. First,
the difference between any one datum and the arithmetic mean,
that is the deviation of that datum from the mean, is calculated. To
avoid negative numbers this deviation from the mean is squared.
The squares of the deviations are then averaged by adding them and
dividing by the number of data. The square root of this average is
then taken to offset somewhat the squaring performed earlier. Briefly
stated, the standard deviation of a set of data is the square root of
the mean of the squares of the individual deviations from the mean
of the data.

We could use the set of salaries above to illustrate the computa-
tion of a standard deviation; however, to avoid being lost in the
arithmetic we shall use a simpler one. Let us compute the standard
deviation of the data

L, % 4 %, 10, 13, 18.

The mean of these data is 8. Hence, the deviations from the mean
are

7, b 4 1, 2, B 10
The squares of these deviations are
49’ 25! 16! 1, 4; 25, 100.

The sum of these squares is 220. The mean of these squares is there-
fore 220 divided by 7 or g1.4 approximately. The square root of this
mean is about §.6. Since the latter figure is large compared to the
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mean of 8, the dispersion of the data must also be large. Had we
performed a similar calculation for the data on salaries, we should
have obtained a standard deviation of 556. The mean, we recall, was
280. Again we would be justified in inferring that the dispersion of
the salaries about the mean must be large.

Of course, even two representative figures such as the mean and
standard deviation do not say as much as the data themselves but
since the mind cannot carry and work with all the data, these figures
are quite helpful.
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Figure 0. The heights of men in a certain community

An alternative to remembering the entire collection of data or to
relying on just the two representative figures is the graph. Hardly
a person who reads a daily newspaper has failed to observe that a
graphical presentation of data makes facts stand out that would
otherwise be far from obvious. Graphs of the rise and fall of the
cost of living and of stock prices are common examples. The graph-
ical approach to data, however, has produced far deeper and more
significant conclusions than a mere display of rise and fall.

Suppose we measured the heights of all the men in a certain com-
munity. Corresponding to each height there would be the frequency
with which this height appears. If we plotted the heights of the men
as abscissas and the corresponding frequencies as ordinates we should
obtain the graph of the distribution of these frequencies. A graph
of actual data is shown in figure 70, wherein a smooth curve has been
drawn through the data. There is no doubt that the graph gives a
picture which is readily retained in the mind and displays at once
a great deal of the information contained in the original data.
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What is especially significant about the distribution of heights as
well as of many other characteristics we shall discuss shortly is that
the curve approximates an ideal distribution known to mathema-
ticians as the normal frequency curve (fig. 71). In fact, the larger
the group whose heights are included the closer the curve comes to
naving the ideal shape, just as regular polygons with more and more
sides approach the shape of the circle.

The normal frequency curve or normal distribution is so com-
mon and so important that we should notice its chief characteristics.

FREQUENCY

MEAN HEIGHT
HEIGHT IN INCHES
Figure 71. The normal frequency curve

The curve is symmetric about a vertical line that represents the
largest frequency among the data. As we follow the curve to the
right and to the left of this line the curve drops slowly at first, then
very rapidly, and finally as it extends still further to the right and
the left, it approaches but does not reach the horizontal axis. The
shape has been likened to that of a bell and, in fact, the curve has
been called the bell-shaped curve.

The abscissa cotresponding to the largest ordinate or frequency
in any normal distribution is certainly the mode of the distribution
since it is the measured quantity that occurs most often. This mode
must also be the median, for the symmetry of the graph tells us that
as many cases occur to the left of this abscissa as to the right. It is
almost obvious that the mode is also the mean because two abscissas,
one on either side of the mode and equally far from the mode, have
the same frequency, and in the computation of the mean, the aver-
age of all these pairs of equally distant abscissas will be the middle
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one. Hence in a normal distribution the mode, median, and mean
coincide.

The normal frequency curve has been familiar to astronomers and
scientists since about 1800 because it occurs often in connection with
measurements. Suppose a scientist is interested in the exact length
of a piece of wire. Partly because the hand and the eye are not per-
fectly accurate and partly because surrounding conditions such as
temperature may fluctuate, he measures this length not once but
perhaps fifty times. These fifty measurements will differ from each
other, sometimes perceptibly and sometimes imperceptibly. A graph
of the various measurements against the number of times that each
measurement appears among the fifty approximates the normal fre-
quency curve. In fact, the more measurements made the more nearly
will their frequency distribution follow this curve.

There is good reason to expect that a set of measurements care-
fully made should follow a normal curve. The errors in measure-
ment should be due to random errors made by the eye or hand or
to random variations in the instruments employed. These errors
should distribute themselves on either side of the true value and
cluster about this value, just as the hits of a rifleman on a target
will, if he is a marksman, cluster about the bull’s eye and become
rarer with greater distance from the center.

The fact that measurements follow a normal curve is very helpful
to scientists. In a normal distribution the data cluster about the
mean value, which, as just noted, should be the true value. Hence,
the mean value of a large number of measurements, if they appear
to follow a normal curve, should be a good approximation to the
true measure. If, moreover, a large set of measurements does not
appear to follow a normal curve some disturbing influence has crept
into the measurements and should be eliminated. For example, if
the length of a piece of metal were being measured in a room with
a rising temperature, the measurements would undoubtedly increase
steadily and fail to follow a normal curve. The mean of these meas-
urements would be grossly in error and a graph of the measurements
would reveal this disturbing factor at once.

The normal curve has been used thousands of times to determine
astronomical distances; to measure mass, force, and velocity; and to
fix solubility, boiling and freezing temperatures, and hundreds of
other chemical quantities. Because of its use in the elimination of
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errors of measurement the normal curve has come to be known also
as the ‘error curve.” Its very existence affirms the seemingly paradox-
ical but none the less true conclusion that accidental errors in meas-
urement do not occur haphazardly but always follow the curve
above. Humans may not even err at will.

In the use of normal distributions it is important to know how
many of the cases lie in any given range of the measured quantity.
Consider, for example, the different heights of 100,000 American
men. It has already been described how the frequencies of the vari-
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Figure 772. The percentages of cases falling in different regions of a normal fre-
quency distribution

ous heights lie on a normal curve. Suppose that the mean and stand-
ard deviation of this distribution are 6% inches and 2 inches respec-
tively. Then (fig. 72) ideally 68.2 per cent of the measured heights
lie within 1 standard deviation or ¢ inches of the mean; that is, 68.2
per cent of the men have heights between 65 inches and 69 inches.
In addition, g5.4 per cent of the heights lie within 2 standard devia-
tions or 4 inches of the mean; and 99.8 per cent of the heights lie
within g standard deviations or 6 inches of the mean. The percent-
age lying within any given fractional number of standard deviations
from the mean has also been computed and may be found in tables.
Thus if a person is studying a normal distribution and computes the
mean and standard deviation, he can obtain all the information he
desires about the distribution from these two quantities.

About 1833 the Belgian astronomer, meteorologist, and statisti-
cian, L. A. J. Quételet, decided to study the distribution of human
traits and abilities in the light of the normal frequency curve. Much
of his data, incidentally, was taken from the thousands of measure-
ments on parts of the human body made by the Renaissance artists,
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Alberti, Leonardo, Ghiberti, Diirer, Michelangelo, and others.
Quételet found what hundreds of successors have since confirmed.
Almost all mental and physical characteristics of human beings fol-
low the normal frequency distribution. Height, the size of any one
limb, head size, brain weight, intelligence (as measured by intelli-
gence tests), the sensitivity of the eye to various frequencies of the
visible portion of the electromagnetic spectrum-all are found to be
normally distributed within one ‘racial’ or ‘national’ type. The same
is true of animals, vegetables, and minerals. The sizes and weights
of grapefruit of any one variety, the lengths of the ears of corn of
any one species, and so on, are normally distributed.

The fact that human traits and abilities follow the same distribu-
tion curve as do errors of measurement was of the utmost significance
to Quételet. He argued that all human beings, like loaves of bread,
are made from one mold but differ only because of accidental varia-
tions arising in the process of creation. For this reason the law of
errors applies. Nature aims at the ideal man but misses the mark
and thus produces deviations on both sides. On the other hand, if
there were no type to which men conformed, we could measure their
characteristics—height, for example—and not find any particular sig-
nificance in the graph or any definite numerical relation in the data.

The more measurements Quételet made the more he noticed that
individual varjations are effaced and that the central characteristics
of mankind tend to be sharply defined. The mean of each of these
characteristics identifies the ideal or ‘mean man.” The mean man
was, furthermore, the center of gravity around whom society re-
volved. The central characteristics, he then declared, result from
general causes, and therefore society exists and is preserved. More
than that, the evidence of design and determinism appeared to be
as clear in social phenomena as in physical phenomena.

We shall defer judgment of Quételet’s philosophical inferences
to a later chapter. Let us content ourselves, for the moment, with
observing that the applicability of the normal curve to social and
biological problems has led to knowledge in these fields and to laws.
Indeed, conviction today that the distribution of any physical or
mental ability must follow the normal curve is so firmly entrenched
that any measurements on a large number of people that do not
lead to this result are suspect. If, for example, a new examination
is given to a large group and does not produce a normal distribution
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of grades, the conclusion about the distribution of intelligence 1s
not challenged; rather, the test is declared invalid.

Graphical studies of distributions lead to some provocative ques-
tions. Mental and physical characteristics, we saw, are normally dis-
tributed. If we graph the distribution of incomes, however—that is,
each of the various incomes against the number of people having
that income—the graph would look much like figure #3. This curve
says that most people get incomes that are at the lower end of the
income scale. As a matter of fact, studies indicate that the most com-

FREQUENCY

MODAL INCOME INCOME IN DOLLARS
Figure 73. The frequency distribution of income

mon income, the modal income, is at the ‘wolf-point’ or the point
of mere subsistence. The curve also shows that there are many people
who make much less than a subsistence income and only a few who
make-much more.

The graph makes immediately apparent, then, gross differences in
income levels and calls attention to the disparity between income,
on the one hand, and physical and mental abilities on the other. This
disparity almost demands an explanation. Why does the distribution
of income differ so radically from the distributions of the abilities
of the people who earn the incomes?

Valuable conclusions, which are not only useful in special prob-
lems but also theoretically important, can obviously be drawn from
data or from graphs based on data. But the cream of any scientific
investigation, as judged by modern standards, is the mathematical
formula. A conclusion ensconced in a formula is doubly valuable.
Not only is the formula a compact and valuable result in itself but
it permits the application of all the mathematical techniques of
algebra, calculus, and other branches for the derivation of new con-
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clusions. The point here can be understood by reference to an earlier
illustration. The concept of universal gravitation is in itself a highly
informative generalization. Because its behavior can be stated as a
formula, however, we may combine it with the laws of motion and
derive the paths of the planets around the sun.

Now the compression of data into formulas is sometimes possible
and when this is the case the process is fraught with meaning. For
the moment we shall illustrate the process of representing data by
a formula, and to do this we shall consider a somewhat specialized
and slightly oversimplified problem.

Let us suppose that we were to set out to study the variation in
food prices over a period of years. The level of food prices, as well
as that of other commodities, 1s gauged by an ‘index number,” which
is roughly an average price calculated by methods that do not mat-
ter here. The following table lists the index numbers (represented
by y) of retail food prices in the United States for many years. In the
table x stands for the number of years after 1goo; that is, x = 1 cor-
responds to 1go1, and so omn.

x 1 3 5 7 9 1 13 15
y 49L5 750 764 820 8go 920 100.0 101.3

Mere observation will not yield the formula relating x and y. The
next step is to graph these pairs of x and y values, letting abscissas
represent values of x and the ordinates values of y (fig. 74). The
points plotted seem to lie along a straight line. In fact, the line
through the points (3, 75) and (g, 8g) passes very close to each of
the other points. Unavoidable errors in the determination of the
index numbers could account for the fact that these other points do
not lie exactly on the line. Thus far we have determined that the
graph of our function is a straight line.

It is a simple problem in co-ordinate geometry to find the equa-
tion of this line. The result is the formula

7
= ~x 4 68,
7 3

where y is the index number corresponding to any given year x.
This formula fits the known data about as closely as the points in
figure 74 come to the straight line.
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The formula represents a considerable achievement. Without any
knowledge of the factors affecting the rise and fall of food prices a
law describing their course has been obtained. The law certainly
covers the period from 1900 to 1915 and, like other laws of science,
can be used to predict—in this case, the level of food prices for some
time after 1915.

There is a temptation to go further. Does the formula give the
true law of the behavior of food prices for all time? Certainly not.
In fact a fundamental question exists as to whether food prices fol-
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Figure 74. Graph of the data on food prices

low any unchangeable pattern. In any case, food prices do not rise
continually and hence the formula above can at best represent the
true law only approximately and for only a short period of time.
It fails to be more representative partly because it is based on a
limited amount of data and partly, perhaps, because the index of
food prices may not be reliable.

While the particular problem of the level of food prices may not
lead to any basic or universal law, the approach described above can
lead to such laws where they exist, that is, where the data do follow
a fixed pattern. The technique is to graph the data and to fit a
formula to the graph. As might be expected, the process may involve
some complicated mathematics when the graph does not happen to
be a straight line.

A more significant example of a formula obtained from data and
one purported to be a true economic law was furnished by the re-
nowned student of political economy, Vilfredo Pareto. Pareto’s study
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of income distribution in a given society led him to the formula
N = Ax™, where N represents the number of people having an in-
come equal to and higher than any given quantity x, while 4 and m
are two constants that must be determined from the data for any one
country. Pareto also found that m had about the same value, ap-
proximately —1.5, in every country he tested. The invariability of
this number from country to country and epoch to epoch appeared
to Pareto and to many other economists to be profoundly significant.

Pareto himself attributed the existence of the same law of income
distribution in many countries not to the economic structure of
society but to the common distribution of certain natural qualities
in men. He used the constancy his law revealed to refute Karl Marx,
who argued that the trend of capitalistic society is to reduce the in-
come of more and more people. And he used it further to argue that
a country should not attempt to improve inequalities in income by
legislation.

We may now raise the same questions for Pareto’s study of income
distribution that we raised for the behavior of food prices. Is there
a universal law of income distribution and, if so, does Pareto’s for-
mula state that law? There is more reason to expect the existence of
such a law in the case of incomes than in the case of food prices.
We can believe that the major factors affecting income would oper-
ate in about the same manner in all societies and at all times. At
least the likelihood of this being the case is as good, on a priori
grounds, as the likelihood that the planets should follow unvarying
paths from year to year.

Actually there has been much dispute among economists about
whether or not Pareto’s law is correct. It was first announced in 18gy
and since then has been tested against data chosen from numerous
countries. In many test areas, such as England during the nineteenth
and early twentieth centuries, the formula fits the data very well. On
the other hand, the failures do not necessarily disprove it for there
is always some question about the reliability of the data.

Actually, we cannot be sure that any law obtained by fitting a for-
mula to data is correct. After we graphed the table of index numbers
and time, we selected a straight line that passed through as many
points as possible and came very close to the other points. There is
more than one straight line, however, that will go through some
points and approximate the others. If the line is changed so is the
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formula that is derived from it later. Of course the difference may
be negligible for practical purposes but this cannot always be ascer-
tained in advance.

The formula may be even less accurate than the discussion above
would indicate. The points on the graph of index numbers lay
almost on a straight line; it was then assumed that the graph was
truly a straight line, the discrepancies being attributed to errors in
the process of gathering the data. The true situation, however, may
be that the data are accurate and that the points do not lie on a
straight line but on a curve that passes exactly through all of them.
If this is the case the formula we found is certainly not the correct
one though again perhaps sufficiently close to it for practical pur-
poses.

What can we do about the errors that may creep into the process
of fitting a formula to data? All we can really do is to make yesterday
and today the guides for tomorrow. We predict by means of the for-
mula obtained, and we check the predictions against what actually
happens. If the prediction is incorrect we can use the new data to-
gether with the old to fit a formula to the enlarged set of data.
Despite the uncertainties that underlie the derivation of formulas
from data and of predictions based on such formulas, there is no
question but what the formulas summarize and represent the known
data in a most desirable form. Moreover, some of these formulas
fitted to data have proved to be so constantly applicable that they
seem to express the invariable behavior of nature as much as do the
Newtonian laws of motion and gravitation. The weighty implica-
tions of this fact will be discussed in a later chapter.

In some statistical studies, however, the very concept of a formula
is not applicable and yet we may wish to glean knowledge from the
data. Let us consider one of the problems investigated by Sir Francis
Galton, a cousin of Darwin and founder of the science of eugenics.
He tackled the problem of whether abnormal height is hereditary
and his method was essentially as follows. He took a thousand fathers
and recorded their heights and then the heights of their sons. Were
a formula at all applicable it would have to relate two variables, the
height of the fathers and the height of the sons. Moreover, for each
value of one variable the formula would yield just one value of the
second. For example, the formula y = gx yields one value of y for
each value of x. Now to any one height of a father there corre:



356 MATHEMATICS IN WESTERN CULTURE

sponded several heights for the sons. Hence a formula was out of
the question. What Galton did was to introduce the notion of cor-
relation. The correlation between two variables is a measure of the
relationship between them. This measure or number is obtained by
substituting the individual values of the variables into a specially
constructed expression known as the correlation co-efficient which
can take on values from —1 to 41.

A correlation of 1 indicates a direct relation; when one variable
rises and falls the other does also; when one is large the other is.
A correlation of —1 means that one variable behaves directly op-
posite to the other one; when the values of the first are high, the
second is low in its range, and conversely. A correlation of o means
that the behavior of one variable has nothing to do with the be-
havior of the other; they proceed independently of each other. A
correlation of 34, say, means that the behavior of one variable is
similar to that of the other though not exactly the same.

Galton found that there is a definite positive correlation between
the heights of fathers and the heights of sons. Tall fathers in general
have tall sons. Galton also found that the deviation of the sons from
the mean of the race is smaller than that of the fathers—that is, the
sons of tall fathers are not quite so tall. Their heights regress toward
the mean of the race. Galton obtained analogous results in his study
of the inheritance of intelligence. On the average, talent is inherited
but the children are more mediocre than the parents. (This study
shouid be read by parents who suffer from the intellectual conde-
scension of their children.)

Like Quételet, Galton was very much impressed with what his
studies revealed. After finding that the results he had obtained with
respect to height and intelligence applied to many other human
characteristics, he jumped to the conclusion that human physiology
is stable and that all living organisms tend toward types.

The most valuable feature of Galton’s work was the notion of
correlation. This can be and has proved immensely useful. To make
a study of the level of industrial production in this country requires
the gathering of complicated data. If, however, there is a high cor-
relation between industrial production and the number of shares
traded on the stock exchange, the latter, easily accessible data could
be used. If general intelligence correlates highly with ability in
mathematics, then persons with good intelligence can expect to do
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well in mathematics. Knowledge of the correlation between success
in high school and success in college or success in college and finan-
cial success later in life can be extremely valuable in predicting the
future of groups of individuals.

There are difficulties involved in the use of statistical methods
where care and judgment, and not mathematics, must supply the
remedies. One such difficulty arises from the meaning of the terms
used in a study. Suppose we wished to study unemployment in the
United States. Who are the unemployed? Should the term include
those people who do not have to work but would like to? Or people
who are employed two days a week and would like full-time employ-
ment? Or the well-trained engineer who can find no job other than
driving a cab? Or the man unfit for employment?

The interpretation of statistical conclusions is also fraught with
difficulties. Statistics show that with each succeeding year more peo-
ple die of cancer. Does this mean that modern life is more likely to
produce cancer? Hardly. Many people died of cancer fifty years ago
but the cause of the deaths was not recognized because medical
techniques were not so advanced. Also people live longer today than
fifty years ago, and since cancer is primarily an affliction of older
people it occurs more frequently. Many of the people who died of
tuberculosis years ago might have been subject to cancer had they
lived longer. Finally, better records are being kept today. In other
words, while cancer may now be more of a ‘killer’ than formerly, we
cannot conclude that modern life is more likely to engender it or
that people living today are more susceptible.

Unfortunately such difficulties in the use of statistics have often
been deliberately concealed or glossed over by advertising men and
propagandists in order to ‘establish’ their claims. Such misuse of
statistics has induced unjustified mistrust and has provoked deroga-
tory characterizations. Statisticians have been described as men who
draw precise lines from indefinite hypotheses to foregone conclu-
sions. There is also the undoubtedly farniliar quip: there are lies,
damned lies, and statistics.

The abuses of statistics should not blind us to their effectiveness
in studies of population changes, stock-market operations, unemploy-
ment, wage scales, cost of living, birth and death rates, extent of
drunkenness and crime, the distribution of physical characteristics
and intelligence, and the incidence of diseases. Statistics are the basis
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of life insurance, social-security systems, medical treatments, govern-
mental policies, and the numbers racket. Even the hard-headed busi-
nessman uses statistical methods to locate his best markets, to con-
trol manufacturing processes, to test the effectiveness of his adver-
tising, and to gauge the interest in a new product. The statistical
approach eliminates haphazard guesses and the captiousness of indi-
vidual judgments and replaces them by highly useful conclusions.

Indeed it is an understatement to say that statistical methods have
been successful in numerous problems. They have been decisive in
making sciences out of speculative and backward fields, and they have
become a way of approaching problems and thinking in all fields.
‘The idea of measurement now pervades all activities of Western civ-
ilization. Long ago the famous Dr. William Osler affirmed that med-
icine would become a science when doctors learned to count. And
the importance of statistical studies led Anatole France to say, in
effect, that people who don’t count won’t count. The mathematical
conclusions drawn from the ‘data for statesmen’ are indeed shaping
the courses of nations.



XXIII

Prediction and Probability

It is remarkable that a science, which began with the con-
sideration of games of chance, should be elevated to the
rank of the most important subjects of human knowledge.

PIERRE SIMON LAPLACE

Over a period of forty years, Jerome Cardan, the Renaissance pro-
fessor of mathematics and medicine, who was so rich in genius and
devoid of principle, gambled daily. Early in his carcer he decided
that if a person did not play for stakes there would be no compen-
sation for the time lost, which could otherwise be spent in learning.
Because he did not desire to waste his time in unprofitable pursuits,
he studied seriously the probabilities of throwing sevens and of pick-
ing aces out of a deck of cards. To aid fellow gamblers he incor-
porated the results of his investigations in a manual called Liber De
Ludo Aleae. This work presents the results not only of his thoughts
on the subject but also of his practical experience. He points out, for
example, that the chance of obtaining a particular card when cutting
a deck is considerably increased by rubbing the card with soap. Thus
was founded the branch of mathematics that is now fundamental in
the theory of gases, the insurance business, and the physics of the
atom.

About a hundred years later another gambler, the Chevalier de
M¢éré, encountered a problem of probabilities and, not possessing
the redeeming mathematical abilities of Cardan, sent it to that math-
ematical prodigy, Blaise Pascal. The alacrity with which Pascal un-
dertook the solution is probably explained by his expectation that
a theory of probability would resolve the fundamental and complex
problems that throughout his life perplexed his mind, strained his
body, and tormented his soul.

359
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No behavior was more riddled with contradictions than that of
Pascal. Conflicting beliefs and desires produced strange vagaries of
conduct and caused him to oscillate between the sacred and the pro-
fane. His literary efforts were divided between serious argumentation
on theological controversies, such as that stylistic masterpiece, the
Provincial Letters, and counsel on love, as in his Discourse on the
Passions of Love. Deeply disturbed by the differences between the
doctrines of the Bible and the dogma of the Roman Catholic Church,
he nevertheless ignored both when he sought to rob his sister of her
inheritance. He awarded to himself a prize he had offered for com-
petition to the scientists of his times, and then complained of their
lack of sincerity in the pursuit of knowledge. He advised people to
restrict their love, even love of children, to a mental rather than an
emotional act; yet, he himself did not hesitate to check experimen-
tally his conclusions on the passions of love. Though he worried
about the way to salvation he transgressed sufficiently to be in dire
need of finding it. His fervid joy in his religious experiences equaled
those of a saint, but his conduct toward people was marred by the
excesses of a sinner. A renowned contributor to the most rational
of man’s activities—mathematics—he nevertheless maintained that
truth comes from the heart. He was the believer in miracles whose
probability he could show to be too small to warrant belief; and he
was the defender of faith who heiped found the Age of Reason.

Even Pascal’s scientific life involved conflicts. Forbidden as a boy
to study mathematics by a father who feared the strain on his young
son’s health, he finally at the age of twelve demanded to know what
the subject was about. On learning the answer from his father he
proceeded to devour its contents. Two years later he was admitted
to the weekly scientific meetings of the great French mathematicians
of the time. At the age of sixteen he proved the famous theorem that
we discussed in our study of projective geometry. He had lived thirty-
one of his thirty-nine years when the Chevalier presented him with
the problem in probability. Pascal communicated with Fermat and
in the interchange of letters that ensued, the two men produced basic
results in the field.

The potential usefulness of a theory of probability should be ap-
parent. Nothing about our future, even an hour from the present,
is certain. The ground under us may be rent asunder in the next
minute. Such possible calamities do not disturb us, however, for we
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know that the probabilities of their occurrence are small. In other
words it is the probability of whether or not an event will happen
that determines our attitudes and actions in regard to the event.

In our daily use of the notion of probability we are satisfied merely
to estimate whether it is high or low. Moreover, whatever numerical
judgments of probability may be made are usually rough estimates.
But estimates which may be wide of the mark do not suffice as a
basis for decisions on large engineering, medical, and commercial
ventures. It is necessary in such situations to know the exact numer-
ical probabilities of particular events. And this mathematics supplies.
Where we are uncertain mathematics tells us exactly how uncertain
we are. Such numerical probabilities are reliable guides to action.

Let us see how these are obtained. For example, what is the prob-
ability of turning up a four on a single throw of a die? One way of
solving this problem might be to cast the die 100,000 times and
count the number of times a four appears. The ratio of this number
of appearances to 100,000 is the answer or pretty close to it. But
mathematicians are not likely to adopt such a procedure unless com-
pelled to. They are essentially lazy and would prefer to sit still and
think the matter through rather than weary their arms by throwing
dice—unless perhaps, as in Cardan’s case, more than an intellectual
exercise is at stake.

Instead, Pascal and Fermat argued thus: A die has six faces; any
one of these is equally likely to show up since nothing in the shape
of the die or in the method of throwing it favors any one face; of
these six equally likely possibilities only one, namely the appearance
of the four, is favorable to us since that is the face we want to turn
up. Hence the probability of a four is 1/6. If we were interested in
either a four or a five turning up we should say that the probability
is 2/6, since in this case two of the six possibilities would be favor-
able to us. If we were interested in not having a four or five turn up,
there would be four favorable possibilities and the probability would
be 4/6.

In general, the definition of a quantitative measure of probability
is this: If of n equally likely possibilities m of these are favorable
to the happening of a certain event, the probability of the event hap-
pening is m/n and the probability of the event failing is (n — m)/n.
Under this general definition of probability, if no possibilities were
favorable, that is, if the event were impossible, the probability of
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the event would be o/n or o, while if all n possibilities were favor-
able, that is, if the event were certain, the probability would be n/n
or 1. Hence the numerical measure of probability can range from
o to 1, from impossibility to certainty.

As another illustration of this definition consider the probability
of selecting an ace, unsoaped, from the usual deck of 2 cards. Here
there are 52 equally likely choices, of which 4 would be favorable.
Hence the probability is 4/52 or 1/13.

There is often some question about the significance of the state-
ment that the probability of drawing an ace from a deck of 52 cards
is 1/18. Does it mean that if a person draws a card 13 times (each
time replacing the card drawn) then one draw will be an ace? This
is not so. He can draw a card go or 4o times and not obtain an ace.
‘The more times he draws, however, the closer will the ratio of the
number of aces drawn to the total number of draws approximate
1 to 13. This is a reasonable expectation because the larger the num-
ber of draws the more likely is it that each card will be drawn about
the same number of times as any other card.

A related misconception is to suppose that if a person draws an
ace, let us say on the very first draw, then the probability of drawing
an ace on the next draw must be less than 1/1g. Actually the prob-
ability is still the same and would be 1/13§ even if three aces had
turned up on three successive draws. A card or a coin has neither
memory nor consciousness and what has already happened does not
affect the future. The essential point about the probability of 1/13
is that it tells us what will happen in a large number of draws.

A term frequently used in connection with probability statements
15 ‘odds.” The probability of throwing a four on a toss of a die is 1/6.
The probability of not throwing a four is 5/6. The odds in favor
of throwing a four is the ratio of the first probability to the second,
that 1s, 1/6 to 5/6 or 1 to . The odds against throwing a four is the
ratio 5/6 to 1/6 or 5 to 1. Again, the probability of ‘heads’ on a
throw of a coin is 1/2; the probability of not throwing a head is 1/2.
The odds in favor of a head, as well as the odds against a head, are
1 to 1. In this case the odds are said to be even.

The definition of probability we have been discussing is remark-
ably simple and apparently readily applicable. Suppose we were to
argue, however, that the probability of a person crossing a street
safely is 1/2 because there are two possibilities, crossing safely and
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not crossing safely, and of these two only one is favorable. If this
argument were sound the reader would be wise not to bother finish-
ing this page but to put his effects in order. The fallacy in the argu-
ment is that the two possibilities, crossing and not crossing safely,
are not equally likely. And this is the fly in the ointment. The defi-
nition of Fermat and Pascal can be applied only if the situation can
be analyzed into equally likely possibilities.

Since it is so important to the application of the definition of
probability that the possibilities be equally likely perhaps we should
reconsider whether the chances of the various faces on a die turning
up are equally likely. This is exactly what some of the dice throwers
we occasionally read about are doing, namely, checking the number
of times the various faces turn up.

But if we must throw dice to verify conclusions about dice arrived
at by the mathematics of probability, we may as well dispense with
the theory. As a matter of fact, in the case of a die thrown up into
the air we can be fairly sure, even without testing, that the possi-
bilities are equally likely. It is logically an assumption, of course,
but one about as strongly supported by our knowledge of cubes—if
not of dice directly—as the axioms of plane geometry are supported
by experience. And where we are sure that the possibilities are
equally likely we do employ the approach of Pascal and Fermat
described above.

Let us apply it to the problem of coin tossing. Suppose two coins
are tossed up into the air. What are the probabilities of (a) two heads,
(b) one head and one tail, and (c) two tails? To calculate these prob-
abilities we must notice first that there are four different, equally
likely ways in which these coins can fall. These are: two heads, two
tails, a head on the first coin and a tail on the second, and a tail on
the first coin with a head on the second one. These last two possibil-
ities are sometimes mistakenly counted as only one since both yield
one head and one tail. If we consider two coins such as a penny and
a nickel, however, it is clear that the case of a head on the penny and
tail on the nickel is different from and equally likely as a tail on the
penny and a head on the nickel. Of the four possibilities, then, only
one is favorable to securing two heads. Hence the probability of two
heads is 1/4. Similarly, the probability of two tails is 1/4. However,
the probability of one head and one tail is 2/4 because two of the
four ways in which the coins can fall produce this result.
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If a person pursues the problem of coin tossing to the case of three
coins, he must first analyze the equally likely possibilities. Again it
is easier if he thinks in terms of three different coins, say a penny,
a nickel, and a dime. There is, of course, only one possibility of three
heads. There are three possibilities of two heads and a tail, however,
since the tail can occur on any one of the coins while the other two
are heads. Also there are three possibilities of one head and two tails,
and one possibility of three tails. The total number of possibilities
is eight. The probabilities of the various occurrences, therefore, are
these: three heads, 1/8; two heads and a tail, §/8; two tails and a
head, 3/8; three tails, 1/8.

We could now consider, purely as an intellectual pastime for the
moment, the probabilities involved in throwing four coins, five coins,
and so on. Unfortunately, the possibilities become much more nu-
merous as the number of coins is increased. At this point Pascal came
to the aid of the mathematicians with a very interesting ‘triangle’
now named after him. Let us consider the following triangular array
of numbers:

1 5 10 10 5 I
1 6 15 20 15 6 1

Fach number in this ‘triangle’ is the sum of the two numbers im-
mediately above it (0 must be supplied where one of these two num-
bers is missing). Thus 4 in the fifth row down is the sum of 1 and g;
6 is the sum of g and 3; and so forth. Hence we could construct row
after row by mere arithmetic.

The really interesting feature of the Pascal triangle is that it gives
at once the probabilities involved in coin tossing. For example, the
numbers in the fourth row, namely, 1, §, 3, 1, add up to 8 and this
is the number of ways in which three coins can fall. Moreover, if we
put each of the numbers in this row over 8, thus 1/8, 3/8, 3/8, 1/8,
we obtain the probabilities of the various different possibilities, that
is three heads, two heads and a tail, and so forth. If we wished to
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know the various probabilities involved in throwing five coins, we
should use the sixth row. The sum of the numbers in this row is ge2.
This is the total number of ways in which the five coins can fall.
If we now form the fractions 1/32, 5/32, 10/32 . . . we obtain the
probabilities of five heads, four heads and a tail, three heads and
two tails, and so on. The number 1 at the very peak of the triangle
should evidently be associated in some way with the throwing of
zero coins. It does in fact yield the probability of retaining our money
if we bet on the fall of zero coins.

Historically, the theory of probability was initiated as an aid to
gamblers. The present widespread interest in the subject, however,
is not evidence of tremendous gambling activity. Rather, the perme-
ation of statistical methods into problems of industry, economics,
insurance, medicine, sociology, and psychology raised questions that
had never arisen in previous applications of mathematics and that
could be answered only by a theory of probability. In order to appre-
ciate the present scope of the subject let us examine a few uses of
the theory.

One of the most original and most impressive applications was
made by Gregor Mendel, abbot of a monastery, who in 1865 founded
the science of heredity with his beautifully precise experiments on
hybrid peas. Suppose there are two types of purely bred peas, green
and yellow. If these peas are cross-fertilized, the second generation
will be either all green or all yellow. Mendel explains this by saying
that one of these colors dominates the other.

Let us suppose green is the dominant color. These green peas of
the second generation are not like those of the first; the first genera-
tion is pure while the second is hybrid. If we cross-fertilize the peas
of the second generation we might expect mixtures of genes, the
supposed carriers of hereditary characteristics, as follows. In the mix-
ture of genes from two hybrid peas green can mix with green, yellow
with yellow, yellow with green, and green with yellow. These are
precisely the possible associations of heads and tails in throwing two
coins. Hence 1/4 of the third generation should be a green-green
mixture; 1/4 should be a yellow-yellow; and 1/2 should be a green-
yellow and yellow-green mixture. Because green is the dominant
color, all those peas of the third generation that contain at least some
green genes should be colored green while the others will appear
yellow. Hence 3/4 will appear green and 1/4 yellow. This propor-
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tion predicted by the theory of probability was actually obtained by
Mendel and, much later, by many other experimenters. The state-
ment of this proportion is Mendel’s first law of inheritance of char-
acteristics.

Mendel went on to consider the proportions that should appear
in later generations from the interbreeding of various types of the
third generation, as well as the proportions that should appear when
several independent characteristics are cross-bred at the same time.
In each case the mathematical theory of probability predicts what
actually takes place.

This knowledge is now used with excellent practical results by
specialists in horticulture and animal husbandry who create new
fruits and flowers, breed more productive cows, improve strains of
plants and animals, grow wheat free of the disease of rust, perfect
the stringless string bean, and produce turkeys that have plenty of
white meat and are small enough to fit the home refrigerator.

The use of the theory of probability in the study of human hered-
ity is especially valuable. Scientists cannot control the mating of men
and women; nor, if they could, would experimental results be so
quickly and easily obtained. Hence they must deduce the fact} of
heredity from just such considerations as were illustrated above. Also
because individuals may be biased in their judgment of human char-
acteristics, the objectiveness of the mathematical approach is far more
essential there than in the study of plants and animals.

The theory of probability also decides practically every move made
by the biggest business in the United States—insurance. Consider the
problem an insurance company faces in connection with John Jones.
On his payment of an annual premium the company agrees to pay
$1000 either at the end of twenty years or on his death if it occurs
before that time. What should the company ask Mr. Jones to pay as
a yearly premium? Obviously this depends on how long Mr. Jones
may be expected to live.

To determine this probability the company could list the various
possible causes of death—cancer, heart disease, diabetes, automobile
accidents, falls, and others. It could then attempt to decide how soon
these causes would affect John Jones. To answer this question the
company would have to study the family background, personal his-
tory, and daily activities of Jones; it would also have to study the
condition of all the organs of his body. With this information it
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could start to calculate the answer. After several days of calculation
only one fact would be sure to emerge, namely, that the calculations
are best consigned to the wastebasket. No analysis of Mr. Jones as an
individual will ever enable the company to decide how soon the
various causes of death may act on him.

The solution of the problem is obtained in quite a different way.
John Jones is just one of the hundreds of thousands of people with
whom the company deals. If the company merely knew what is most
likely to happen to the average man within a small numerical margin
of error, it would be safe, for what it may lose on Jones it may make
up on Smith and in the end come out, where it would like to—ahead
of the game.

What the insurance companies did do was to study the death rec-
ords of a random collection of 100,000 people who were alive at the
age of ten. Now these records say, for example, that at the age of
forty, 48,106 people out of the 100,000 were alive. Hence the com-
panies decided to take 48,106/100,000 as the probability that any
person aged ten will live to be forty. In like manner, to obtain the
probability of a person aged forty living to be sixty the companies
took the number of those alive at age sixty and divided this by the
number alive at age forty.

The approach to probability exemplified by the procedure of the
insurance companies is a basic one. Essentially, it 1s an appeal to
experience for the primary data to which mathematical reasoning
is then applied. This use of experience to obtain probabilities is,
strictly, outside the domain of mathematics. Mathematics begins after
the probabilities are known and is concerned with reasoning about
the numbers so obtained. For example, if an insurance company
wishes to issue a thirty-year policy in which a husband and wife are
involved, it is important to know the probability that both will live
thirty years from the commencement of the policy. Let us suppose
that both are forty years old. Now the probability of one person of
age forty living to be seventy is about .50 because of %8,106 people
alive at age forty, 38,569 were alive at age seventy. This is the prob-
ability of throwing a head on a throw of a single coin. Hence, the
probability of both living to be seventy is the probability of throwing
two heads in a throw of two coins; therefore, the probability that
both people will live to be seventy is .25. The foregoing is a simple,
run-of-the-mill problem. As might be expected, mathematics is em-
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ployed for the solution of far more complicated probability problems
arising in insurance.

The use of experience to obtain the basic probabilities is unavoid-
able in medical problems. Suppose, for example, that it is known
from the reccrds of a great many cases that 5o per cent of the people
afflicted with a certain disease die from it. The probability of death
from the disease is then taken to be 1/2. This probability may be
applied now to a practical problem. A doctor who believes he has a
new treatment tries it on four patients and all recover. Does this re-
sult mean that the new treatment is effective and should be applied
to all cases?

At first blush 1t does appear that the treatment is remarkable.
Whereas we would expect two deaths, none occurred. The theory of
probability may be called in to decide the matter. In a particular
collection of four people it is not true that two must die. In such a
group all or none or any number between zero and four may die.
Only in a very large number of cases would 5o per cent succumb.
The situation is mathematically equivalent to the throwing of coins.
The chance of any one person recovering from the disease is the
chance of throwing a head on a throw of a single coin. The proba-
bility of four people recovering is the probability of throwing four
heads in a throw of four coins. If we consult the fifth line of Pascal’s
triangle we find that the probability of throwing four heads in a
throw of four coins is 1/16. This number then is also the probability
that the doctor would strike a group of four people all of whom
would recover from the disease even without his treatment. This
probability means that if we were to pick very many groups of four
people afflicted with the disease then, on the average, one out of six-
teen groups would contain four people who would recover. Now the
doctor who administered his treatment to a group of four may have
struck the one group in which all would recover. Since this is by no
means very unlikely—many a 100 to 1 shot wins a horse race—it is
not safe to conclude that the new treatment is effective. It should be
tried on many more cases before any conclusion is drawn.

The problems we have thus far considered have involved situa-
tions wherein only a few possibilities could occur. When a person
throws a die, for example, the possibilities in regard to the outcome
are just six. In the case of mortality the possibilities are only two.
In many problems of probability, however, the possible outcomes
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are either infinite or so large that it is mathematically convenient
to treat them as infinite. Suppose, for example, that measurements
of a length are made. These measurements are just a few of the in-
finite number of different measurements that could be made. Hence,
the calculation of the probability that the mean of the measurements,
let us say, is correct, must take into account the infinite number of
possibilities. Similarly, the output of a machine that produces hun-
dreds of thousands of units of an item is not uniform; the variations
from unit to unit, though slight perhaps, are so numerous that the
entire collection is treated as though it were part of an infinite col-
lection.

The theory required to treat problems in which the number of
possible outcomes is infinite—the theory of continucus probability—
was created by the peasant, aristocrat, politician, and superb mathe-
matician, Pierre Simon Laplace (1749-182%). Cardan, Pascal, and
Fermat were attracted to probability by problems of gambling. La-
place’s interests, equally impractical, were in the heavens. He used
the theory of probability to obtain a measure of the reliability of
numerical results derived from data and to determine the likelihood
that certain astronomical phenomena were due to definite causes
rather than pure chance. It is perhaps no longer a surprise to us that
a mathematical theory intended to serve the astronomer should prove
useful in a thousand walks of life. Nevertheless, we shall examine a
few of these uses to see once more how broad the reach of mathe-
matics is.

Where the possibilities in a particular phenomenon are infinite,
the frequency distribution of these various possibilities is most often
and very fortunately normal. Hence it is possible to apply the knowl-
edge acquired about such distributions to the problems of continuous
probability. It is necessary merely to make a slight transformation
in the facts bearing on the normal curve to use it for this purpose.
We may recall that a normal distribution is characterized or fixed
by the mean and standard deviation. In addition, 68.2 per cent of
the cases fall within one standard deviation or one ¢ of the mean;
2#.2 per cent of the cases fall in the interval between o and 2 ¢ away
from the mean; 4.4 per cent of the cases fall in the interval between
2 ¢ and § o away from the mean; and the balance of the cases, namely
.2 per cent, lie more than g ¢ awav from the mean. These statements
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need merely be translated into probabilities. For example, the prob-
ability that any one datum falls within one o of the mean must be
.682 since 68.2 per cent of all cases fall in this interval. Another way
of stating this fact is that on the average 682 out of 1000 cases will
fall within one standard deviation of the mean. Similar translations
should, of course, be made for the percentages occurring in the other
intervals. Because the normal frequency distribution curve can be
reinterpreted in the manner just described it is often referred to as
the normal probability curve (fig. 75).

o o O MEAN® © o
Figure 75. The normal probability curve

Let us consider one or two examples of the use of the normal
probability curve. The frequencies of the heights of all American
men practically fill out a normal distribution with a mean of about
64" and a standard deviation of about 2”. What is the probability,
therefore, that any American man chosen at random has a height be-
tween 65" and 6¢”? Since all heights between 65" and 6g” lie within
one ¢ of the mean and since 68.2 per cent of the cases have heights in
this range, the probability is .682. In like manner, the probability
that 2 man chosen at random has a height between 67”7 and 71" is
.4'77 because the range 6%” to 71” is 2 ¢ to the right of the mean,
and 47.7 per cent of the cases have heights within this range.

It should be noticed that we do not ask the question, what is the
probability that a man chosen at random has a height of exactly 68”?
The answer to this question is zero because this is the probability
of any one possibility out of an infinite number. Such a question is
not too significant, however. All measurements are approximate.
If the error in measuring heights were say .1”, then it would be more
significant to ask, what is the probability that a man chosen at ran-
dom has a height between 64.9” and 68.1”? This question can be
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answered by referring to data on the normal curve just as we did in
answering the questions in the preceding paragraph.

A more interesting problem in probability arises when we try
to determine from a limited number of cases, that is a sample,
whether boy and girl babies are equally likely. Statistics in one com-
munity showed 18go male to 1710 female births in g6oo cases. Does
this departure from a 5o-50 ratio indicate that boys and girls are not
equally likely? Not necessarily, for to say that boys and girls are
equally likely, or that the probability of a boy is 1/2, means only
that in a very large number of cases there will be about as many
boys as girls. What can we conclude, then, from the data on the
3600 cases?

We could approach this problem by assuming that boy and girl
babies are equally likely and then ask for the probability of obtain-
ing 18go boys in g6oo births. Now in 3600 births the possible out-
comes are finite, namely, zero boys, one boy, two boys, and so forth
up to g6oo boys. Since the probability of a boy, like the probability
of a head on a coin, is assumed to be 1/2, we could resort to the
thirty-six hundred and first line of Pascal’s triangle to obtain the
probability of 18go boys. The calculation of the required terms of
this triangle, however, even if speeded by the techniques of algebra,
would be quite tedious.

Instead, we consider the 3600 births as one set out of a very large
(strictly infinite) number of sets, each containing g600 births. Among
these many sets some would yield zero boys, some one boy, and so on.
If we were to plot the number of sets corresponding to each number
of boys, we should obtain a normal frequency distribution. (This
fact could almost be foreseen from a study of Pascal’s triangle. For
example, the seventh line tells us that three heads and three tails
occur 20/64 of the time in throws of six coins, whereas the proba-
bilities of other results fall off symmetrically on either side of this
outcome.) On the assumption that boys and girls are equally likely,
the largest number of sets would contain 1800 boys and 1800 girls.
This number of boys, 1800, is, then, the mean number of boys. We
must now appeal to a formula of statistics, which will not be given
here, to obtain the standard deviation of this frequency distribution.
In this case ¢ = go. This means that 68.2 per cent of the sets would
contain a number of boys between 14470 and 18g0. In the set of 3600
actually observed the number of boys was 18go. This number would
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lie 3 o to the right of the mean. Now the probability of an occur-
rence which is § o or more to the right of the mean is only .co1 or
one chance in a thousand. Since this probability is indeed small, our
assumption that boy and girl babies are equally likely must be wrong.
As a matter of fact, the records of many thousands of births show
that the ratio of male to female births is 51 to 49, which may be
evidence of God’s good judgment or of the fact that a girl is worth
slightly more than a boy.

The problem we have just examined amounts to asking for the
probability that a particular happening, the birth of 18go boys in
3600 babies, should fall within a specified interval of the entire
range of possibilities. This question was readily answered by refer-
ence to the normal probability curve. A somewhat different question
is posed by the following type of problem.

A manufacturer of cord sells his product in balls ‘weighing one
pound each on the average. He claims that practically no ball of
cord leaves his factory which deviates by more than .1 of a pound
from the one-pound standard. A retailer buys 2500 balls of this cord,
weighs the 2500 balls, and finds that they weigh 2450 pounds, that
is they average .98 of a pound. The average weight of the balls is
then well within the .1 of a pound limit to which the manufacturer
claims he holds. On the other hand, he could be deliberately pro-
ducing his cord to weigh .g8 of a pound and thereby be making a
hidden profit. Is the manufacturer honest? That is, is it likely that
a random selection of 2500 balls from the product the manufacturer
offers should just happen to weigh .02 of a pound less on the average?

The question concerns the behavior of the means of samples. Just
how close should the mean of a sample be to the mean of the entire
population—that is, the factory output—for us to believe that it is
a sample of that output? This question can be answered by a study
of the frequency distribution of the means of all possible samples
of 2500 units each. We cannot develop here the theory of the dis-
tribution of means. It must suffice to say that these means form a
normal distribution; moreover, the mean of this frequency distribu-
tion of means could be shown to be 1, the mean of the entire output,
and the standard deviation of this distribution of means could be
shown to be .0006. Now the particular sample that the customer re-
ceived had a mean of .g8. This mean differs by .o2 from the mean
of 1 and is therefore about 30 times .0006 or about go o to the left
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of the mean of the samples. The probability of a datum falling as
much as 3o o away from the mean is so small as to be negligible.
Hence the likelithood that the 2500 balls received by the customer
was indeed a sample of the manufacturer’s purported output of one-
pound balls is not to be credited. We should be fully justified in
concluding that the manufacturer was deliberately producing balls
of cord averaging less than one pound in weight.

A recent and most interesting application of the mathematical
theory of probability was to ‘prove’ the existence of extra-sensory
perception. Here again the proof hinges upon the relation between
the sample and the complete population. The existence of extra-
sensory perception has been stoutly maintained by Professor J. B.
Rhine and others because certain individuals are able to predict the
numbers and colors of cards drawn from a deck in a greater percent-
age of cases than the mathematical probability would call for. That
is, if the probability of correct prediction in a given case is 1/5, say,
the subject should be able to guess correctly about 1/ of the time.
But suppose that in 8oo trials the subject guesses correctly 207 times
instead of the expected 160. Is the excess over the expected 160 an
accident in this particular set of 8oo trials or is it significant? Such
an unexpectedly large number of correct guesses is interpreted by
Rhine to mean an unusual mental faculty to read hidden cards by
extra-sensory perception. Whether the additional 44 correct guesses
is sufficient evidence for such a belief is subject to dispute. Rhine
has calculated that the probability of getting the additional 47 cor-
rect guesses in a particular set of 8oo trials is 1/250,000. This proba-
bility is so small that Rhine does not attribute the extra guesses to
mere chance.

In all of the applications we have thus far examined, the theory
of probability has served to measure the likelihood of some event or
possibility. Not content to perform this humble service to science
and industry, the theory became a tyrannical master. The problem
that incited this step is one we mentioned earlier. The molecules of
a gas attract each other in accordance with the Newtonian law of
gravitation. Any attempt to predict the motion, expansion, contrac-
tion, or temperature variation of a gas on the basis of this Newtonian
law becomes hopelessly complicated, however, because of the large
number of molecules. Mathematics cannot solve exactly the problem
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of the motion of even one molecule subject to the attractive forces
of just a few others.

The successful attack on this problem was made by Clerk Max-
well, and the method was provided by the theory of probability. The
endless number of molecules in a volume of gas is replaced by one
ideal or representative molecule whose size is the most probable size
of all those in the gas, whose velocity is the most probable velocity,
whose separation from other molecules is the most probable one,
and whose other properties are always the most probable ones. The
most probable behavior of this ideal molecule is then taken to be the
behavior of the gas itself. It is astonishing, but none the less true,
that the laws obtained in this manner describe and predict the be.
havior of gases as exactly as the laws of astronomy predict the mo
tions of the planets. In essence, the most probable behavior of the
gas turns out to be the actual behavior.

The explosive 1mplications of this application of the theory of
probability will be considered later. For the moment it is enough to
notice that probability theory thus emerged from its role as an
evaluator of data and hypotheses to demand respect as a primary
method for obtaining laws.

The vital role that the theory of probability has come to assume
in scientific work and in philosophic thought was foreshadowed in
the work of Pascal. He began by applying the theory to gambling;
he ended by applying it to God. Pascal stood at a turning point in
history, at the time when the new science had begun to chalienge
vigorously the old faith. Like every thinking man of his century, he
was impelled to take part in the conflict and to seek some resolving
philosophy. Intensely religious by nature and yet a notable con-
tributor to science and mathematics, Pascal felt the conflict more
poignantly than any other man. Because he saw both sides so well
his mind became a battleground and in a most appealing passage he
openly declared his bewilderment:

This is what I see that troubles me. I look on all sides and I find every-
where nothing but obscurity. Nature offers nothing which is not a sub-
ject of doubt and disquietude; if I saw nowhere any sign of a Deity
I should decide in the negative; if I saw everywhere the signs of a Crea-
tor, I should rest in peace in my faith; but, seeing too much to deny and
too little confidently to affirm, I am in a pitiable state, and I have longed
a hundred times that, if a God sustained nature, nature should show it
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without ambiguity, or that, if the signs of a God are fallacious, nature
should suppress them altogether: Let her say the whole truth or nothing,
so that I may see what side I ought to take.

But God refused to reveal himself. Pascal then bethought himself
of his early work on probability and of the problems in gambling
he had solved thereby. Did the theory have any message for the
problem of religious belief? The answer came to him in the form
now known as Pascal’s wager.

The value of a ticket in a lottery is the product of the probability
of winning and the prize at stake. Even though the probability may
be small, if the prize is very great, the value of the ticket is great.
So, reasoned Pascal, though the probability that God exists and that
the Christian faith be true is indeed small, the reward for belief is
an eternity of bliss. The value of this ticket to heaven is, then, in-
deed great. On the other hand, if the Christian doctrine is false, the
value lost by adherence is at most the enjoyment of a brief life. Let
us then wager on the existence of God.

Pascal’s wager was not a flippant remark. It was a cry of despair.
The problem he faced has reappeared in but slightly altered guise.
It was reopened in recent times by the theory he created.



XXIV

Our Disorderly Universe: The Statistical View
of Nature

Here then we vest: The Universal Cause
Acts to one end, but acts by various laws.

ALEXANDER POPE

Is there law and order in this universe or is its behavior merely the
working of chance and caprice? Will the Earth and the other planets
continue their motions around the sun or will some unknown body,
coming from great distances, rush through our planetary system and
alter the course of every planet? Cannot the sun some day explode,
as other suns are doing daily, and burn us all to a crisp? Was man
deliberately planted on a planet especially prepared for his existence
or is he merely an insignificant concomitant of accidental cosmic
circumstances?

The thinking person would like, more than anything else, to
know the answers to such questions. Insignificant by comparison are
his grandiose plans for a United Nations, his pressing monetary con-
cerns, and the irritations of daily life. His irrepressible desire for
answers is man’s ennobling quality and his ceaseless search for knowl-
edge about himself, about the wonders of nature, the structure of
the universe, and the forces that keep all the activities of the uni-
verse going gives point to lives which would otherwise spend them-
selves in orgies of meaninglessness. The answers may never be fully
known, but thanks to the great mathematicians man does have many
significant clues. Unfortunately, there is more than one interpreta-
tion of these clues.

One of the interpretations is already familiar to us. Arguing from
the existence of the mathematical laws uncovered during the New-
tonian era, the eighteenth-century thinkers erected the most compre-
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hensive and influential philosophical system of modern times. It
propounded a world that is designed and orderly and that functions
according to plan. Mathematical laws made manifest that design,
and the unfailing fulfillment of scientific predictions gave proof that
the design was being adhered to. Of course, laws that regulated the
motions of planets and other inanimate objects did not make clear
where man fitted into the scheme of things. But could it be doubted,
since evidence of design was unmistakable, that man was included?

This philosophy of determinism still dominates our thoughts and
beliefs and guides our actions. Unfortunately, the order of nature,
supremely simple and harmonious to the founders of modern sci-
ence, now appears to be breaking up in the maelstrom of statistics
and probabilities which the nineteenth and twentieth centuries have
used so effectively.

Mathematicians themselves, needless to say, were proud of the new
ideas and techniques they had introduced for handling statistical
data. They were pleased, too, with their conversion of the intuitive
notion of probability into a highly useful tool for the guidance of
man’s actions. But as members of the intellectual community in
which they worked, their joy was short-lived, for it was the very
success of statistical methods and of the theory of probability that
caused the orderly structure of nature to crumble about their heads.

If the formulas and laws obtained by the new procedures had been
inaccurate they would have been dismissed as unreliable substitutes
to be used only when the sure procedure of deducing conclusions
from thoroughly acceptable mathematical and scientific axioms
failed. And had they been merely rough approximations, no undue
philosophical significance would have been attached to the new
methods. But such was not the case. They were, in fact, surprisingly
accurate and effective, and thereby hangs the tale.

Let us approach the heart of the problem and examine the chal-
lenge to the philosophy of determinism posed by the advent of sta-
tistical methods. We shall allow ourselves the privilege of borrowing
the Platonic technique of dialogue, so that the arguments pro and
con will be stated by Mr. Determinist and Mr. Probability of High
Degree. The latter, the youthful protagonist, will open the discus-
sion with a fuller statement of the problem.

The most disturbing consideration, he points out, is that statis-
tical methods and the theory of probability produce thoroughly
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reliable laws where we have no reason to expect any at all. Consider,
for example, the distribution of intelligence. Select any large, ran-
dom group of people and measure their intelligence by a well-de-
signed test; the distribution will approximate the normal frequency
curve. The larger the group on which the test is tried the closer to
a perfect normal distribution will the curve be. The apparently
unplanned bestowal of the varied and inexplicable qualities that
determine intelligence hardly bespeaks a law; yet the distribution of
intelligence follows a curve that expresses regularity and an invari-
able relationship.

Again, consider the phenomenon of inheritance. The chromo-
somes of the parents mingle freely in the fertilized egg and endless
transformations take place from conception to maturity; yet the
transmission of hereditary characteristics can be accurately predicted
by the theory of probability.

Now make numerous measurements of a length and graph the
various measures against the frequency with which each occurs. The
crudity of the eye and the hand should produce considerable irregu-
larity in these measurements; yet the curve will show almost a nor-
mal distribution and the larger the number of measurements the
closer does the curve approach z normal distribution. Even man’s
errors follow a law. In short, concludes Mr. P., we have the surpris-
ing and disturbing result that laws describe phenomena which, to
all appearances, should be unlawful.

But why be disturbed, old Mr. D. asks, if there are laws covering
phenomena for which none was expected? Why not be grateful for
having more laws? Do they not strengthen the argument for deter-
minism? Design apparently exists everywhere, even where you did
not expect it.

That is precisely why I am concerned, replies Mr. P. Not only
have we no reason to expect laws in these situations but we have
every reason not to expect them. Since we do have laws governing
such situations, how much significance can we attach to the existence
of the mathematical laws produced by Newtonian science? Why
infer design and determinism from the existence of those laws?

Not so fast, rejoins Mr. D. Suppose we put it this way. We appear
to have mathematical laws describing phenomena which to the best
of our knowledge appear to be haphazard and disorderly, and for
this reason you question the significance of laws we have always re-
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garded as proving the design of the universe. May it not be, how-
ever, that the seemingly disorderly phenomena do follow physical
laws but, because these phenomena are so complex, they appear to
our limited intelligences to be the results of chance.

Your argument sounds reasonable enough, answers Mr. P., who
is merely softening up his opponent with a few kind words. Under
close inspection the motions of the molecules of a gas appear com-
pletely irregular; yet physicists believe that each molecule follows
the same physical laws that the Earth follows in its path around the
sun. Similarly, it could be argued that the distribution of qualities
that make for intelligence and the process of heredity follow orderly
physical procedures which determine precisely the state of each indi-
vidual, but that these procedures are too intricate to be grasped by
our understandings. The same could be said of economic phenom-
ena, the incidence of death, and other seemingly unlawful affairs.
Thus phenomena that appear to be disorderly may be completely
deiermined, and the mathematical laws obtained from statistical
studies may merely reflect the existence of these underlying orderly
physical processes.

Mr. D. is now complacently off his guard, while Mr. P., who knows
his theory of probability, prepares to strike.

But now consider the following facts, Mr. D. When six coins are
tossed up simultaneously any number of heads from zero to six may
result. We have no way of telling what the exact number of heads
will be because toc many known and unknown factors determine
the outcome: the strength of the wind, the force imparted to the
coins by the hand, the shape of the floor on which they fall, and
other factors. We assume then that the result of tossing the coins is
a matter of chance. Moreover, the greater the number of times the
coins are tossed the more chance is permitted to play a role. And
yet if these six coins are tossed up a great number of times the
theory of probability enables us to calculate in advance about how
many times zero heads will show up, about how many times one
head will show up, and so on to the last possibility. The larger the
number of throws the closer do the results agree with the predictions
of the theory. Hence, regardless of whether or not the fall of a coin
is determined by some series of inviolable rules, the assumption that
chance alone decides the outcome yields mathematical laws that
predict the outcome.



380 MATHEMATICS IN WESTERN CULTURE

As a matter of fact, continues Mr. P., you know that nineteenth
century physicists obtained some very famous laws on the behavior
of gases by just such a procedure as I sketched a moment ago for
the fall of coins. They maneuvered around the difficulties in study-
ing the action of billions upon billions of molecules in a gas by
working with an ideal, fictitious molecule whose mass, velocity, and
other properties have the most probable values that can occur among
the various mass and velocity values of the molecules in the gas.
Yet the laws built up by reasoning with this ideal molecule are as
applicable as any that mathematics and science have produced, de-
spite the fact that they state only the most probable behavior of a
gas rather than the necessary behavior. Hence, the belief that indi-
vidual molecules follow a preassigned pattern is not supported at all
by the lawful behavior of masses of molecules. Indeed the belief is
irrelevant.

Mr. D. is far from ready to retreat from his position.

You agree, Mr. P., that the motion of the molecules in a gas and
the fall of a coin may be following definite, inescapable laws but
as a convenience you assume that each coin falls haphazardly and
that the molecules of a gas have most probable characteristics. Just
because this assumption of chance behavior and your mathematics
of probability predict successfully, we should not lose sight of the
overwhelmingly important existence of underlying, fundamental
laws. Although the use of probability arguments for complex phe-
nomena is convenient and fruitful, it does not in itself discredit the
underlying laws. In fact, it is only because these laws do hold that
probability arguments yield sensible and useful conclusions.

Mr. D., you do not appreciate as yet the full force of my argu-
ment. Indeed you will see that you are mistaken in believing in any
necessary laws. Consider, for example, the fall of a coin and consider,
in particular, its weight, which is involved in any conceivable New-
tonian law describing its motion.

During the time the coin is falling its weight is not even constant.
The coin consists of an enormously large but continually changing
number of molecules, for every solid object is continually gaining
and losing molecules. The wind that blows on the coin while it is
falling consists of billions and billions of molecules, set into motion
we know not how, all of which dance around the coin in quite dif-
ferent manners. The surface of the floor on which the coin falls is
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not fixed in shape. As molecules of wood leave or join it, the shape
changes and so the angle at which the coin hits the floor is not pre-
cise. Neither is the distance the coin falls. Suppose we try to measure
the distance from the center of the coin to the surface of the floor.
Where is the center of a coin whose shape is continually changing?
Where does the surface of the floor start since its molecular layers are
completely irregular? Shall we use a ruler to measure the distance?
After all, even the ruler is not constant in length any more than any
mass is. The molecules at 1ts ends leave and return and continually
alter its length.

Now that we see the complexities in the structure of matter, Mr.
P. hurries on, aren’t we audacious to speak at all of scientific laws?
All such laws deal with matter, with masses, surfaces, lengths, pres-
sures, densities, and other properties that are never constant for any
object. Only the crudity of our hands, eyes, and measuring instru-
ments deceives us into believing that there are such things as fixed
lengths and masses and that we can speak of exact scientific laws.
Laws can involve mass, length, volume, weight, and other qualities
only in so far as they use average figures for these quantities. The
laws can therefore be no more than convenient summaries of irregu-
lar physical states wherein the variations cluster around some aver-
age numbers. To sum up, Mr. D., our examination of the fact that
some laws cover apparently chaotic phenomena has led us to the
conclusion that all scientific laws do. What shall we say now about
the significance of scientific laws for the existence of an orderly
nature?

The point of your argument as I understand it, Mr. P., is that
when we examine the structure of matter itself we find that seem-
ingly constant quantities are actually continually changing. Hence,
you ask, how can we speak of definite, invariable scientific laws when
all they can be are convenient statements about average effects just
as a statement about the mean income of workers is an average. But
consider, for a moment, Mr. P. Why discredit broad, revealing, well-
verified laws merely because of some microscopic irregularities that
don’t affect at all the major events covered by the laws?

What you say might be true, Mr. D., if the situation were not
much worse than I have thus far described it. Let us go a little
further into the nature of matter itself and let us consider the mole-
cules themselves. They are, you know, made up of atoms, and these
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in turn are made up of free electrons and a nucleus with a very
complicated structure of its own. And now, Mr. D., hold tight while
1 tell you a thing or two about the nucleus and the electrons. You
probably think of these particles as little chunks of matter each
existing in a definite place at any one time. Well, so did scientists
years ago. Today we no longer can say that. We must say that each
electron and each constituent of the nucleus exist everywhere but
with more or less probability depending on the place. In effect, mod-
ern atomic theory says that you are not seated in a chair in a corner
of this room. You exist everywhere to a degree of probability that
varies from place to place and that is greatest for the corner in which
you think you sit. A fantastic theory of matter, you say? As fantastic
as the medieval concept of hell? Maybe, for it is just this theory that
has brought the hell of atomic bombs into our world.

Now, Mr. D., where is the good, old-fashioned, solid matter that
obeys precise, compelling mathematical laws? The stone that Dr.
Johnson once kicked to demonstrate the reality of matter has be-
come dissipated in a diffuse distribution of mathematical probabili-
ties. The ladder that Descartes, Galileo, Newton, and Leibniz
erected in order to scale the heavens rests upon a continually shift-
ing, unstable foundation.

I fail to see the point, Mr. P. You are simply telling me that the
structure of the atom is so complex, in the light of our present un-
derstanding, that scientists have resorted to probability arguments
to master it. What does that prove? You have merely shifted the
argument from the falling of coins to the structure of the atom.
I do not doubt that atomic structure is complex nor do I question
the wisdom of using probability theory in studying the structure.
Yet the very existence of laws for the atom, like the existence of laws
for the distribution of intelligence or for the inheritance of char-
acteristics, does not in itself deny the possibility of underlying de-
termined behavior. Dr. Einstein has said apropos of this very point,
‘I shall never believe that God plays dice with the world.’

Maybe, Mr. D., but my point, which you claim not to see, is that
you cannot conclude that the acquisition of workable laws does, in
itself, necessarily establish design, invariable order of nature, and
causality—in short, determinism. You must, I believe, concede that
much. I know, however, that you still feel that you have a few facts
up your sleeve. You would argue that the very existence of laws de-
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scribing the behavior of matter, despite the complex structure of
matter, is even added proof that these laws imply design.

Mr. P. has, of course, stated Mr. D.’s argument because he found
it hard to stop talking even when his own point was made and be-
cause, with the usual overconfidence of youth, he thought he could
state Mr. D.’s case better than Mr. D. himself. According to parlia-
mentary procedure, the floor is still Mr. P.’s to take up his side of
the argument.

Let me obtain a law for you, Mr. D, and let’s see how happy you
will be about it. List for me the data on national prosperity for the
past fifty years and the strength of the sunspots during those years.
You know, of course, the statistical process of fitting a formula to
data. This process will give me a formula, a mathematical law that
relates national prosperity and strength of sunspots. What conclu-
sion should we draw about the existence of some inevitable connec-
tion between the two variables? None at all, wouldn’t you say? And
yet how does this formula differ from so many scientific formulas
which, you say, proclaim laws of the universe?

Mr. D. here rises with some emotion from his chair (which exists
everywhere with varying degrees of probability).

The answer is apparent, Mr. P. The scientific laws will continue
to hold indefinitely whereas the formula fitted to the data on sun-
spots and national prosperity will not. Take Kepler's laws, for ex-
ample. All the observations of the past four hundred years support
them. Is it not significant that the Earth has followed the same laws
for so long a period of time?

I am glad you picked Kepler's laws as an example, Mr. D. First,
let me remind you that Kepler’s laws were originally obtained by
fitting formulas to data. After many years of supreme effort and
after trying some fifty different types of curves, Kepler found that
the path of Mars is an ellipse. All the observations of Copernicus and
Brahe supported him. Luckily for Kepler and the history of science
those observations were not too good. Today we know from theory
and more accurate observations that the true path is not an ellipse
but is distorted by all sorts of perturbations arising from the gravi-
tational attraction of the other planets. Kepler’s laws, then, happen
to be descriptions of the average behavior of the planets. Strictly,
they do not hold today.

Moreover, the fate of Kepler's laws has been the fate of all sci-
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entific laws. They hold for a time and then some refinement is
shown to be necessary by the general increase in scientific knowl-
edge. Kepler’s laws were in themselves refinements on Copernican
theory and Copernicus, as we know, improved on Ptolemy. Because
Kepler had the advantage of building on earlier theory his laws
proved to be good descriptions. But we see that even his work is not
the last word.

Maybe not, Mr. D. hastens to counter, pausing for a moment in
his nervous pacing up and down. But you agree that the history of
those laws shows more and more refinement. Refinement leading to
what? To the true laws, no doubt; and Kepler’s laws, if not the final
word, come very close. But how could we come closer to true laws
if there were no true laws to aim at?

The answer, Mr. D., is that if the Earth in its motions adheres
exactly to one pattern, which Kepler’'s laws approximate so well,
that pattern may still be only the most likely behavior; no necessity
that we know of obliges the Farth to continue to do the most likely
thing any more than necessity tells coins how frequently they must
turn up heads. Tomorrow the Earth may crash into the sun. In
other words, Mr. D., and if you stopped that nervous walking you
might concentrate better, we are not questioning the existence of
working laws but rather the significance to be attached to them,

I am sorry if my pacing has been upsetting you, Mr. P. Let me
present a major argument in favor of Kepler’s and other laws that
does not hold for your statistical laws, your laws obtained by fitting
formulas to data. Let us remember that Galileo and Newton success-
fully analyzed the phenomena of motion. As a result, we have a
physical explanation of the behavior of the planets in terms of a
force of gravitation. This force keeps the planets in their paths and
keeps them obeying Kepler's laws. Indeed these laws are a mathe-
matical consequence of the law of gravitation. Even the perturba-
tions in the paths of the planets are now explained by the action of
gravitation.

Mr. D., 1 am embarrassed for you. Fie on your explanations! A
fig for your theory of gravitation! You know very well that it is no
more than a fiction. What is this force of gravity that keeps the
planets in their paths? No fantasy of literature strains our intellects
so much as the attempt to understand how the sun exerts its pull
on the Earth. Far more reasonable connections could be devised to
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relate sunspots and national prosperity. All we really have are for-
mulas and we have no more reason to attach philosophical impor-
tance to the existence of these formulas than to the existence of a
formula relating sunspots and national prosperity.

Mr. D. once more sought the reassurance of his comfortable chair
whose real existence he began to doubt. Mr. P. continued to hold
forth and decided to drive home his advantage.

Let us look back for a moment, hie resumes. Doesn’t the argument
between us boil down to one point? On the knowledge of a few
laws of nature you have based a philosophy of nature. The intro-
duction of statistical methods and the theory of probability now
compel us to appreciate how little is really implied by the discov-
ery, or shall I say manufacture, of a few laws.

Mr. D. was hardly listening; he had become lost in thought. The
various arguments of his loquacious opponent had evidently opened
his mind to the existence of an underlying irregularity and disorder
even in phenomena formerly considered lawful. The development
of atomic theory by chemists and physicists revealed new problems
and uncertainties in that domain and certainly made patent the fact
that matter is far more complex than had been supposed. The devel-
opment of the kinetic theory of heat, which explained this phenome-
non in terms of the rapidity of motion of molecules, made it clear
that the flow of heat and cold is no more than a mass effect of irregu-
lar motions of billions of molecules. The constant pressure of a
liquid, instead of being a definite single force, was simply the mass
effect of an irregular bombardment of the walls of the container by
the individual molecules of the liquid. A smooth mirror surface was
really only a collection of molecules, each behaving differently even
though the entire collection gives the net effect of reflecting light
steadily and in accordance with mathematical laws. The sounds of
human voices and of musical instruments, reproduced day in and
day out with almost complete fidelity and so well represented by
mathematical formulas, were but the average effects of irregular
mass movements of air molecules. Galton’s use of statistical methods
to find the laws of heredity—after his failure to find or understand
the mechanism—made that phenomenon also appear to be the sport
of chance. The forms and varieties of plants, animals, and even
human beings were limitless. The weather was more contrary than
obliging. Man could not predict, much less control, droughts, hur-
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ricanes, and cloudbursts. The very forces of nature that had been
admired for their simplicity, order, and invariability included un-
expected and unexplainable tidal waves, volcanic eruptions, and
earthquakes. Nature suddenly appeared unpredictable, perverse,
and capricious.

Thus the very same world which the eighteenth century regarded
as rigidly determined and designed in accordance with immutable
mathematical laws seemingly had to be viewed now as chaotic, law-
less, and unpredictable. Reality appeared totally void of purpose, a
‘tale told by an idiot, full of sound and fury,. signifying nothing.’
Man, in particular, was but an accident of the blind, fortuitous con-
course of events. The mathematical laws of science amounted to no
more than convenient, usable summaries of the average effect of dis-
orderly occurrences. This attitude toward nature and its laws, which
affirms that nature is chaotic and unpredictable and that its laws are
no more than convenient, impermanent descriptions of average ef-
fects, is known as the statistical view of nature.

This statistical view and the deterministic view are unalterably
opposed. Although they both agree on the existence and applicabil-
ity of scientific laws, they differ widely on the interpretation of these
facts. Determinism asserts that scientific laws are statements of the
necessary, invariable, universal behavior of natural objects. The
statistical view regards laws as statements possessing merely a high
degree of probability. The determinist believes in an essential con-
nection between objects related by law as the Earth and sun are in
the laws of Kepler. The statistical theorist maintains that the law
is merely an observation of a temporary situation, an accidental jux-
taposition as significant as my wearing a brown necktie and my
neighbor’s smoking a cigar at the same time. Determinism asserts
that the present state of nature determines the future unalterably.
If I throw a ball into the air it must follow a parabolic path right
down to Earth again. The statistical view says that not only may it
fail in any one case to follow a parabolic law, but it may travel di-
rectly to the sun.

An example or two may further clarify the difference between
the two points of view. Suppose a bat hits a ball. Under the deter-
ministic point of view, the forces at work when the bat contacts the
ball compel the ball to trace a definite pattern of flight which can
be predetermined and which is described by the mathematical laws
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of motion. Given a few quantitative facts, the motion of the ball
could be predicted with certainty. According to the statistical view,
we could say that the billions of molecules in the bat, when brought
close to the billions in the ball, would be very likely during their
random motions to hit many of this second group of molecules and
impart to them their own velocities. Since so many of the molecules
in the ball would be affected, the ball itself would probably be set
moving in that direction in which most of its molecules are sent by
contact with those in the bat. The probability that the ball will
move in a definite direction is so large that we could hardly expect
to encounter any departure from this expected behavior, though a
radical departure is at least possible. The needle does exist in the
haystack even though the probability of finding it is very, very small.

One other example may further clarify the distinction between
the deterministic and statistical views. In normal times a nation re-
garded as an entity displays a continuous, regular behavior pattern.
People go to work; they eat; men and women marry and raise fam-
ilies; old and young enjoy their respective amusements; elections
are held and the winners take office. If we did not know any more
about the nation than just these facts, and if such behavior could be
deduced from very reasonable axioms about human beings, we
should be tempted to assert that the behavior of nations and even
life itself was designed and determined by some super-being and
constrained to follow this invariable design. The pleader for the
statistical view, however, would urge us to look closer. What do you
discover when you examine the behavior of individuals themselves?
Many people don’t go to work; they beg, borrow, and steal. Some
people don’t eat; they starve. Quite a few don’t marry, or marry and
have no children. At election time only a fraction of the people vote;
of the rest, some don’t care to and others are not allowed to. In
view of these facts what shall we say of the behavior of the people
as a group? Do they follow invariable, predetermined laws? Are not
statements about group behavior merely descriptions of general,
mass effects which conceal all sorts of opposing actions, irregularities,
and even disorder? The statistical view recognizes the variability
and even haphazardness of individual actions. It expects, however,
that the over-all effect of multifarious acts, though differing from
one individual to another, will nevertheless produce an average re-
sult in the whole nation. But it specifically allows for the possibility
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that the mass effect may sometimes be revolution and a thorough
alteration in the average behavior of the people.

The question, whether determinism or the statistical view of
nature is correct, is not an academic one. In a designed rand orderly
universe, life has meaning and purpose. Assurance of this design
gives man courage and reason to live and build. It also reinforces his
faith in a Supreme Being, for the strongest rational argument for
the existence of God 1s the argument based on a designed universe.
A thinking, superhuman Providence or Grand Designer is almost a
necessary antecedent of a mathematically guided natural world. The
existence of a God, in turn, gives substance to vast areas of religion
and ethics. On the other hand, if the statistical view of nature is cor-
rect, the physical world and man’s role in it are irrational. Occur-
rences obviously serve no purpose and head nowhere since they are
merely accidental, chance happenings. The whole cosmos may even
be destroyed tomorrow by some universal cataclysm. Life offers noth-
ing but the meaningless pleasures and pains of the moment.

Undoubtedly it was because so much hung in the balance that the
determinists returned to the fray. New reasons were found for read-
ing design, causality, and determinism into the laws of Kepler, Gali-
leo, and Newton. Let our bloody but unbowed’ Mr. D., who all this
time has been marshaling new arguments, speak for himself.

There is, he declares, an essential distinction between statistical
laws and the formulas of the Newtonian class. The former are based
on tables of data or on probability arguments; the latter are deduced
from unquestionable mathematical and scientific axioms which surely
are true of nature, despite the fact that the underlying structure of
matter is complex and largely unknown. For this reason we can be
certain that the Newtonian laws are also exact truths and, therefore,
genuine laws that nature must follow.

Mr. P. was, of course, also prepared to take up the cudgels again
and he began to speak with an assurance that the discussion must
soon come to a satisfactory conclusion.

The burden of your argument, Mr. D., rests on the truth of the
axioms. Now do axioms describe facts inherent in the universe or are
they merely fitted to experience in essentially the same way as a law
of retail food prices is fitted to actual prices? Consider, for example,
Newton’s axiom about the force of gravity. It says that the force with
which one mass attracts another equals the product of the masses di-
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vided by the square of the distance between them. This axiom has
proved itself to be fairly accurate time after time in that deductions
based on it have led to numerical results in agreement with observa-
tions to within the limits of accuracy of these observations. Yet the
applicability of this axiom to the motion of the Earth around the
sun, or the moon around the Earth, is ascertained only after many
observations of the heavens and after many measurements of masses,
distances, and time intervals. Hence the axiom may be no more than
a good but approximate description of the average behavior of na-
ture. As a matter of fact, before Newton decided on his formula other
formulas very much like his had been tried and rejected because they
did not give such accurate results. Why should Newton’s axiom be
the last word? Evidently a person cannot be any surer of the truth
of such scientific axioms than he can be of a law of food prices.

Myr. D. may have been expecting some such argument, for he was
prepared to reply at once.

Very well, Mr. P., you may doubt the absolute truth of scientific
laws in so far as they depend on axioms such as Newton’s law of
gravity. You must grant, however, that the theorems of pure math-
ematics itself are unchallengeable, for these rest on axioms that are
entirely self-evident. Moreover these axioms do not involve measure-
ment at all. Would you challenge the axiom that the whole is greater
than any of its parts or the theorem that the sum of the angles of a
triangle is 180°? Surely the axioms and therefore the theorems of
pure mathematics are absolute truths about nature and constitute
definite laws. The existence of these laws in the structure of the uni-
verse makes the existence of others very likely.

The argument seemed incontrovertible, but Mr. P. was not at all
dismayed. Having recently completed his formal education, he had
learned that new, non-Euclidean geometries had been created which
apply to physical space as well as Euclidean geometry does. Hence,
he confidently set about deflating his opponent’s contentions.

An excellent point, Mr. D., but unfortunately a hundred years
behind the times. You have heard, no doubt, of non-Euclidean geom-
etry. On some other occasion * we shall look into that subject a bit.
Let me assure you here that the axioms and theorems of non-Euclid-
ean geometry, which contradict Euclid’s, are at least as good a de-

* See Chapter XXv1.
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scription of physical space as Euclid’s. We have not the slightest
evidence for the truth of Euclidean geometry. Not the slightest.

As we might well imagine, Mr. D. was indeed baffled. Every argu-
ment he had set forth had been swiftly demolished. But suddenly a
gleam of cunning came into his eyes and a mild excitement shone
forth. He began cautiously and with a slight touch of irony in his
voice.

You have no doubt heard of the theory of probability, Mr. P.?
Do you grant too that the Keplerian and Newtonian laws, which we
both admit to be broadly applicable, are very simple laws? Now what
is the probability that the laws of a disorderly universe arising in a
haphazard fashion should be simple? And compare that probability
with the probability of finding simple laws in a universe operating
in accordance with design. By which probability would you be
guided?

Mr. P. appreciated the force of the argument only too well. The
probabilities were against him. He reflected carefully and then slowly
unwound the opposing argument, apparently working it out as he
talked.

After thousands of observations of the planet Mars, he resumes,
Kepler found that its path is a simple ellipse. This does not mean
that the observations he possessed all lay exactly on an ellipse; the
small differences were charged to errors in measurement and ignored.
Kepler, who believed that God used mathematics to construct the
universe, was well pleased with the ellipse because it supplied a
simple law of motion. But mathematicians would argue that all
Kepler had done was to pick one of many curves that fit the data
within the range of experimental error. Had he been willing to take
a more complicated curve he might have found one fitting his meas-
urements even more closely than the ellipse. Was Kepler correct in
picking the simpler curve and charging the departure from this curve
to errors in measurement? Evidently we cannot be sure. Since no
measurements will ever be exact this uncertainty will never be re-
moved. The argument for design based on the simplicity of scientific
laws can be reduced to this: from among the many formulas man
can find that describe a natural phenomenon within errors charge-
able to measurement, he selects the simplest one. Viewed this way
the argument of simplicity reflects a preference of man’s mind rather
than the state of nature.
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Though Mr. D. by this time was secretly preparing to abandon
his ship, he advanced timidly, though not without some hope, one
more argument.

I see, he states, at least one more weighty argument in behalf of
the truth and necessity of scientific laws, namely, their universal ap-
plication in practical engineering. Bridges, buildings, dams, engines,
and power plants constructed with the indispensable aid of these
laws hold up. Bridge spans do not collapse; engines do the job they
were designed to do. If there were not a large measure of truth in
the laws, if nature were not constrained to obey them, why should
they apply so universally and so well?

Sir, your argument has more emotional than logical force. For
thousands of years people worked under the hypothesis—conviction
to them—that the Earth was flat. Within the restricted geographical
areas inhabited during those years, this hypothesis was good enough
to give results in accord with experience. The hypothesis was, of
course, incorrect. Similarly, since the time of Newton, scientists have
utilized his quantitative law of gravitation and every engineering
project has depended on its extensive use. Today, as.a result of the
creation of the theory of relativity, we know that Newton’s law is
not accurate. More than that, the new theory dispenses with the force
of gravity entirely. Yet for over two hundred years the law of gravi-
tation has been a scientific dogma. It is still used because it gives
results good enough for most purposes in man’s work-a-day world.
Hence the applicability of a formula or a theory has little to do with
truth or with the existence of design in the universe. You have made
the mistake, Mr. D)., a very common mistake, of believing that a
theory which works for many years must be true, whereas its actual
status is no better than a working hypothesis. The error was made
with Ptolemaic theory, the flatness of the Earth, Euclidean geometry,
and the concept of gravitation. Actually man has just been stumbling
from one description of nature to another; only we discover our
errors so slowly and correct them ever so much more slowly that for
long periods of time we relax in the delusion that we have discovered
laws of nature. Fortunately men like Copernicus, Newton, and Ein-
stein prevent us from losing ourselves irrevocably in false beliefs.

Of course, parries Mr. D., I might abandon my argument for
determinism based on the universal applicability of all scientific laws
and base an even better one on the applicability of just one simple
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theorem of mathematics. Although my mathematics is apparently
not up to date, Mr. P, I do know that in mathematics we build long
chains of pure reasoning that are absolutely independent of expe-
rience. The conclusions we arrive at are often far removed from the
axioms. For example, the proposition of Euclid asserting that a tan-
gent of a circle is perpendicular to the radius drawn to the point of
contact is hundreds of steps removed from the axioms on which it
ultimately rests. Yet the theorem is as much in accord with experience
as the axiom is. Why should the result of so many steps of pure
reasoning accord thus with experience? Is it not because nature her-
self is rationally designed and lawful? Nature does not permit con-
tradictions any more than man’s mind does.

Since you do hold such naive views, Mr. D., I must ask you how
you know that the long chains of reasoning will continue to produce
theorems in accord with nature. May not human reason behave at
times like an automobile that keeps to the road for many miles but
then edges imperceptibly to the side and finally lands in a ditch?
The ditch for the sweet chariot of reasoning may be just ahead and
when the vehicle finally lands there it will be fit for the academic
junk yard next to that one-horse shay--the argument based on the
orderliness of nature.

Possibly such a frightful accident will occur, Mr. P., but until it
does the existence of logical, intricate, and extensive mathematical
developments whose theorems apply as broadly and effectively to
nature as do the axioms must, under any philosophy other than
determinism, be labeled a miracle.

Not really, Mr. D. This miracle is readily explained. How did
man obtain the principles of reasoning which enabled him to deduce
the hundreds of theorems you refer to? Suppose, for example, I were
to argue that because all fallible beings are human and because all
mathematicians are human, all mathematicians are fallible. How
would you determine whether I have used correct logic? Would you
not check the principles involved against your experience with fa-
miliar classes of objects? In other words, Mr. D., man learns to reason
by studying nature’s behavior. He then finds that the conclusions of
his logical processes are in accord with nature if his axioms are. Is
there anything startling in this concordance? What you call a prin-
ciple of logic is no more than an abstract formulation of nature’s
apparent behavior.
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Mr. D.’s defenses appeared to be completely shattered. In desper-
ation he decided to attack.

As a proponent of the statistical view of nature, Mr. P., how do
you account for one element in the organization of nature which
seems irreconcilable with your position? The tendency of energy is
to dissipate itself so that it cannot be harnessed for man'’s needs; for
example, after water falls from a height it levels off and can no longer
be used for power. Since energy is available to man in the form of
the sun’s heat, coal, oil, atomic processes, and waterfalls, it does ap-
pear that the energy was especially created in usable form rather thar
that it came about as a result of a haphazard arrangement of mole-
cules. In fact, the probability of an arrangement such as exists on
our Earth arising by chance is smaller than the probability that an
arbitrary selection of one million people will produce a group all of
the same height.

Mr. P. was on home ground and he therefore felt able to counter
with confidence.

The strength of your argument, Mr. D., appears to be in the fact
that the particular organization of energy found on our planet is a
highly improbable one. It is indeed highly improbable. But now
consider a lottery in which 100,000 tickets are sold, one of which is
the winner. The odds against holding a winning ticket are 99,999
to 1. Yet one person with those odds against him does win. Agreed
then that the conditions on our Farth do constitute a highly improb-
able state, this state is possible and has occurred. Conscious design
need not have been responsible for it. Further, there appear to be
millions of planets in the sky on which the particular organization
of energy found on the Earth is not encountered. Hence its occur-
rence on one planet is all the less surprising.

In spite of the irrefutable finality of this answer, old Mr. D. now
felt that he had won at least a moral victory. He had forced Mr. P.
to concede that our Earth was a highly improbable one. Deeming
it best to terminate the discussion at the most favorable position he
had been able to achieve throughout the long conversation, he ex-
cused himself on the ground that he had to complete a proof of a
new law of electromagnetism.

Perhaps we can rejoin them if they re-open their discussion at
some future time. Let us mention, before leaving the subject, that
between the two views, the world as an orderly, determined organi-



394 MATHEMATICS IN WESTERN CULTURE

zation and the world as chaos in which pure chance reigns, there are
many intermediate points of view. One such view asserts that nature
is neither lawful nor chaotic. The human mind thinks in such terms
and unconsciously imparts these qualities to nature just as man
makes God in his own image. The mind possesses within itself the
desire to organize experience in the form of mathematical laws. It
also possesses concepts such as exact quantitative laws and exact geo-
metrical forms and applies these concepts to experience in order to
comprehend it. The laws that result do not exist in the universe at
all. They are but natural projections of our desire, reflecting the
essential nature of mind and perhaps also its limitations, much as
the lover's description of the loved one reflects the lover.

It 15 not our intention to explore all the schools of thought on the
subject of law in nature. They run the gamut from absolute deter-
minism to complete chaos. We must be content here to conclude with
a'restatement of the main theme, namely, that the development of
mathematical ideas and methods has determined the dominant at-
titudes toward nature and, as a consequence, toward religion and
society.



XXV

The Paradoxes of the Infinite

We admit, in geometry, not only infinite magnitudes, that
is to say, magnitudes greater than any assignable magnitude,
but infinite magnitudes infinitely greatér, the one than the
other. This astonishes our dimension of brains, which is
only about six inches long, five broad, and six in depth, in

the largest heads. VOLTAIRE

Tristram Shandy was hopelessly perplexed. He had begun to write
his autobiography and found that he could record only half a day’s
experiences in one day of writing. Consequently, even if he were
to start writing at birth and even if he were to live forever, he could
not record his whole life, for at any time only half of his life would
be recorded. And yet if he did live on indefinitely he ought to be
able to record his whole life, for the experiences of his first ten years
would be recorded by the end of his twentieth year; the experiences
of his first twenty years by the end of his fortieth year; and so on.
Thereby every year of his life would be reached at some time. Hence,
depending on which way he reasoned, he could or could not com-
plete his autobiography. The longer Tristram puzzled over this para-
dox the more confused he became and the farther he appeared to be
from a decision.

Tristram’s inability to resolve the paradox was really to be ex-
pected, for his problem involved an infinitude of time. The greatest
mathematicians and philosophers from Greek times on had been
plagued with problems involving infinite quantities and had not
fared any better. For example, Galileo recognized that the number
of whole numbers is infinite; that is, the number of these whole
numbers is greater than any finite number that can be named. He
recognized, also, that the number of even whole numbers is also in-
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finite. Which of these two infinite sets, he asked, is the larger one?
On the one hand, it seemed as though the first should be, for it con-
tains all the numbers of the second set and more besides. On the
other hand, to each number in the first set there corresponds exactly
one number in the second, as 5 corresponds to 10. Also, to each
number in the second set there corresponds exactly one in the first,
as 10 corresponds to 5. In view of this one-to-one correspondence
between the two sets there should be as many in the first as in the
second. Galileo concluded that it was impossible to compare infinite
quantities and abandoned further thought on the subject. He says
‘infinity and indivisibility are in their very nature incomprehensible
to us.” Leibniz, too, considered the very same question and concluded
that the notion of the number of whole numbers is self-contradictory
and should be rejected.

Not many years before a successful attack was finally made on the
problems of the infinite, the supreme nineteenth-century mathema-
tician, Karl Friedrich Gauss, expressed a horror of infinite quanti-
ties: ‘I protest against the use of infinite magnitude . . . which is
never permissible in mathematics.’

However much mathematicians recoiled from or repudiated the
thought of infinite quantities, by the middle of the nineteenth cen-
tury mathematics could no longer dispense with the concept. During
the period from 1600 to 1850 mathematics had made gigantic strides.
In this heroic age great intellectual adventurers had dared to leap
over chasms of difficulties to goals envisaged by their genius and far-
sightedness. These trail blazers expected that others would build the
bridges to support the circumscribed steps of the more cautious
thinkers who were to follow.

But the bridges were not easily built. The attempts to fill the gaps
left during the heroic age were frustrated by paradoxes, contradic-
tions, and more paradoxes. There developed an imperative need for
critical thinkers with imagination and daring of another kind, the
kind that would be able to dispense with and even override intuition
and ‘common sense.” This need was finally met. Neither the more
circumspect workers, however, nor the trail blazers could have antic-
ipated the astonishing and profound disclosures which the critical
efforts brought forth.

The first successful attack on the problems of the infinite was made
by Georg Cantor. His father had urged him to study engineering,
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a more profitable pursuit than teaching, and Cantor had started to
follow this down-to-earth career; he ended by contributing to the
the most abstract regions of mathematics. His work got the re-
ception that innovation and originality usually encounter—neglect,
ridicule, and even abuse. One fellow-mathematician, Leopold Kro-
necker, attacked it viciously. Somewhat milder and more typical of
the response to it was the remark made in 19go8 by Henri Poincaré,
the most famous of the late nineteenth-century mathematicians:
‘Later generations will regard [Cantor's] Mengenlehre as a disease
from which one has recovered.” Mathematicians, let it be known, are
often no less illogical, no less closed-minded, and no less predatory
than most men. Like other closed minds they shield their obtuseness
behind the curtain of established ways of thinking while they hurl
charges of madness against the men who would tear apart the fabric.
So severe were the attacks on his work that Cantor began to doubt
himself, became depressed, and suffered mental breakdowns.

Toward the end of his life (he died in 1918), the uncommon sense
of his logic finally gained some recognition from a few colleagues.
It is comforting to contrast Poincaré’s statement above with one
made just a little later by David Hilbert, the greatest mathematician
of this century: ‘No one shall expel us from the paradise which
Cantor has created for us.” Today Cantor’s work is so widely and
completely accepted that many profound mathematicians are quite
willing to devote themselves to the solution of further problems
which the acceptance of Cantor’s work brought in its train.

And now let us see how Cantor attacked the problem of infinite
quantities. The most familiar examples of infinite collections are the
collection of whole numbers, the collection of fractions, and the col-
lection of all real numbers, that is, whole numbers, fractions, and
irrational numbers such as V2, V3, and ». To obtain the number
of objects in such collections by counting is impossible because the
process is endless. On the other hand, describing them as infinite
sheds very little light on them, for all this word says is that they are
not finite. Such a description is about as informative as the statement
that Pithecanthropus erectus is not a cow. We must substitute, if
possible, a positive answer to the question of how many objects there
are in infinite collections.

Cantor recognized, of course, that the number of objects in an
infinite collection ot class cannot be obtained by counting. He also
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recognized the deeper significance of another seemingly superficial
observation. Suppose we have two classes of objects such that to each
object in the first class there corresponds one and only one object in
the second and conversely. For example, if a squad of soldiers, each
carrying a gun, were to pass before us there would be just such a
correspondence between soldiers and guns. Technically, the relation
between the two classes, soldiers and guns, is described by the phrase
one-to-one correspondence. Obviously, two classes that are in one-
to-one correspondence must contain the same number of objects.
Moreover, it is not necessary to count the classes to reach this con-
clusion.

Cantor’s greatness lies in his perception of the importance of the
one-to-one correspondence principle and in his courage to pursue
its consequences. If two infinite classes can be put into one-to-one
correspondence then, according to Cantor, they have the same num-
ber of objects in them. For example, the class of positive whole
numbers

1 2 8§ 4 5 6

and the class of reciprocals of these numbers
v Y% oY% U oY% %

are in the one-to-one correspondence whereby each number in the
first class corresponds to one and only one number in the second,
namely, its reciprocal. In like manner, to each number in the second
class there corresponds one and only one in the first. Hence, these
two classes have the same number of objects in them. The number
that represents the quantity of objects in these particular classes Can-
tor designated by %o (aleph-null). It is called a transfinite number.

To say that the number of positive integers, as well as the num-
ber of any set of objects in one-to-one correspondence with the posi-
tive integers, is ¥, does not seem to answer the fundamental ques-
tion of how many there are in each set. The reader may say that
No is a stranger to him and gives him no information on the num-
ber of positive integers. The objection is not a valid one. This
number is as informative as the number one billion billion. The
Iatter number is no more than a symbol representing the quantity
of objects in a particular collection just as Np represents the number
of positive integers.
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Of course the reader may retort that he can count the objects in
a collection of one billion billion whereas he cannot count & ob-
jects. Hence, the former number means something to him whereas
the latter does not. The distinction is correct but insignificant. Who
has counted a billion billion objects? Theoretically it is possible to
do so but theoretically it is also possible to assign numbers to infinite
collections of objects. And just as the knowledge that two different
collections each have a billion billion objects is definite and valu-
able, so the knowledge that two infinite collections contain the same
number of objects, a fact indicated by the use of the same number
to represent both collections, 1s definite and valuable—indeed, as we
shall see, perhaps more valuable than knowledge of the number one
billion billion.

The argument for Cantor’s definition is even stronger. ¥, is as
meaningful as the number three itself. This number means some-
thing to us because we can now readily call to mind a group of
objects for which this number denotes the quantity. To a child learn-
ing to count, however, the number three is meaningless. But just as
the child grasps the meaning of three by associating it with three
fingers or three blocks, so the man may grasp the meaning of %, by
becoming familiar with collections having 8o objects in them. Can-
tor’s theory permits him to decide which these collections are.

With Cantor’s definition in mind, let us reconsider the difficulty
that bewildered Galilec and blocked his thinking about infinite
quantities. Galileo, we recall, recognized the one-to-one correspond-
ence between the collection of positive integers and the collection of
positive even integers and was unable to reconcile this fact with the
fact that the first collection contained all the numbers in the second
collection and more besides.

Cantor’s solution to the dilemma is that the collection of positive
integers and the collection of positive even integers both contain ¥
objects, despite the fact that the second collection is contained in
the first one. The number of whole numbers and the number of
even whole numbers is the same because the two collections of num-
bers are in one-to-one correspondence.

Is it not absurd that the collection of positive integers should have
as many numbers as the subcollection of positive even integers? Yet
if we accept one-to-one correspondence as a basis for deciding the
numerical equality of infinite collections we must agree to this seem-
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ing absurdity. Apparently we are being led into contradictions that
make nonsense of all our reasoning. Here we must swaliow hard and
face a surprising fact. There are no logical difficulties in Cantor’s
concept of infinite numbers. Our belief that it is absurd to have as
many positive even integers as positive integers is merely a habit
of thought formed while working with finite collections of objects.
This mode of thought, however, which serves for finite collections,
is no reliable guide to an understanding of infinite collections. Once
again in the history of mathematics we face a conflict between logic
and traditional thinking. And once again we face a parting of the
ways. It was the failure of mathematicians before Cantor’s time to
understand that they must abandon some habitual ways of thinking
about quantity that kept them from developing the subject of infi-
nite numbers. But the critical thinkers of the nineteenth century
were not so easily deterred.

In fact they took the bull by the horns. Following a suggestion
of Bernard Bolzano, a professor of philosophy and a notable prede-
cessor of Cantor in the development of the theory of infinite classes,
an infinite set was defined to be one that can be put into one-to-one
correspondence with a part of itself whereas a finite set cannot be.
Thus the set of positive integers is infinite because there is a one-to-
one correspondence between the whole class and the even numbers,
which are only a part of that class.

Can every infinite collection be put into one-to-one correspond-
ence with the positive integers? By no means. The set of all numbers
between o and 1, a collection that includes whole numbers, frac-
tions, and irrationals, cannot be put into one-to-one correspondence
with the positive integers. The proof is readily made by showing
that any supposed one-to-one correspondence between the positive
integers and the set of all numbers between o and 1 leads to a con-
tradiction. We shall omit the details, however.

Since the infinite collection of all numbers between o0 and 1 can-
not be put into a one-to-one correspondence with the positive in-
tegers, the two collections cannot be equal in number. The number
of numbers between o and 1 is represented by the transfinite num-
ber C. Accordingly, any collection of objects in one-to-one corre-
spondence with all the numbers between o and 1 must also contain
C objects.

An example of a set of C objects is furnished by the points on a
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line segment. Consider a line and a fixed point O on that line. Let
us attach to each point on the line the number that expresses the
distance of that point from O, with the added condition that dis-
tances to the right of O are to be positive and those to the left, nega-
tive. There is, then, a one-to-one correspondence between the num-
bers from o to 1 and the points on the line to which the numbers are
attached. This implies that the number of these points is C.

We have defined C as the number of real numbers between o
and 1. This set is in one-to-one correspondence with all the positive
real numbers. We shall prove this fact geometrically. The set of
real numbers is itself in one-to-one correspondence with the points
on a line, such as the X-axis used in co-ordinate geometry. Hence let
the points on the line L (fig. 76) and to the right of O represent all

0 Poa P

Figure 76. The one-to-one correspondence between the points of a unit segment
and the points on a half-line

the positive real numbers, and let OA4 be the unit segment so that its
points are in one-to-one correspondence with the real numbers be-
tween o and 1. We construct a rectangle such as O4BC and draw the
diagonal OB. Now let P be any point to the right of O. Draw CP
and let it intersect OB in Q. From Q drop a perpendicular to L thus
obtaining P’. Under rthe correspondence determined by the construc-
tion just described any point P anywhere on L and to the right of O
corresponds to one and only one point P* in OA. Conversely, if we
start with any point P’ in OA and construct a perpendicular to OA4
at P, this perpendicular will cut OB in Q, say. We then draw CQ
and where CQ cuts L we have the point P corresponding to P’. Since
the points on OA4 are in one-to-one correspondence with all the
points to the right of O and on L, the number of points in 04 as
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well as on the entire half-line is C. Stated arithmetically, the set of
positive real numbers is in one-to-one correspondence with the real
numbers between o and 1 and hence the number of positive real
numbers is C.

The number of points on a line segment and the number of points
on an entire half-line are the same despite the fact that one is infi-
nite in length and the other is just one unit long. Actually O4 could
have been two units in length or any other finite length and our re-
sult would have been the same. Hence the number of points on any
line segment is always C.

This conclusion, like others established above, seems to violate
our intuition. What right have we, however, to expect more points
on the larger of two line segments? What precise knowledge about
points and lines supports such an expectation? Euclidean geometry
does require that any line segment contain an infinite number of
points since any line segment however small can be bisected, but
this geometry says nothing about the number of points on a segment.
Cantor's theory does, and it informs us that any two line segments,
regardless of their lengths, possess the same number of points. This
conclusion is not only logically sound but it also permits us to dis-
pose of some perplexing questions about the nature of space, time,
and motion that had bothered philosophers for over two thousand
years.

Our intuitions of space and time suggest that any length and any
interval of time, no matter how small, may be further subdivided.
The mathematical formulation of these concepts takes into account
this property. For example, any line segment may be bisected by a
precise Fuclidean construction. The mathematical line contains ad-
ditional properties. Any length consists of points, each of which has
no length; moreover, these points are related to each other as are
the numbers of the number system. Now between any two numbers
there is an infinite number of other numbers; for example, between
1 and 2 there are 114, 114, 114, and so on. Hence, between any two
points on a line there is an infinite number of other points. Simi-
larly, the mathematical concept of time regards time as consisting
of instants, each with no duration, which follow each other as do
the numbers of the number system. Thus twelve o’clock is an instant
and there is an instant corresponding to any number of seconds after
twelve o’clock that we can name. It is true, then, for instants as for
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points on a line that there is an infinite number of instants between
any two.

There are difficulties in these mathematical concepts of length
and time which were first pointed out by the Greek philosopher
Zeno, but which can now be resolved by use of the theory of infinite
classes. Let us consider a formulation by Bertrand Russell of Zeno’s
Achilles and tortoise paradox.

Achilles and the tortoise run a race in which the slow tortoise is
allowed to start from a position that is ahead of Achilles’ starting
point. It is agreed that the race is to end when Achilles overtakes the
tortoise. At each instant during the race Achilles and the tortoise
are at some point of their paths, and neither is twice at the same
point. Then, since they run for the same number of instants, the
tortoise runs through as many distinct points as does Achilles. On
the other hand, if Achilles is to catch up with the tortoise he must
run through more points than the tortoise does since he has to travel
a greater distance. Hence, Achilles can never overtake the tortoise.

Part of this argument is sound. We must agree that from the start
of the race to the end the torteise passes through as many points as
Achilles does, because at each instant of time during which they run
each occupies exactly one position. Hence there is a one-to-one cor-
respondence between the infinite set of points run through by the
tortoise and the infinite set of points run through by Achilles. The
assertion that because he must travel a greater distance to win the
race Achilles will have to pass through more points than the tor-
toise is not correct, however, because, as we now know, the number
of points on the line segment Achilles must traverse to win the race
is the same as the number of points on the segment the tortoise
traverses. Again we must notice that the number of points on a line
segment has nothing to do with its length. In other words, it is Can-
tor’s theory of infinite classes that solves the problem and saves our
mathematical theory of space and time.

In his fight against the infinite divisibility of space and time Zeno
proposed other paradoxes that confounded his adversaries and that
can be answered satisfactorily only in terms of the modern mathe-
matical conceptions of space and time and the theory of infinite
classes. Consider an arrow in its flight. At any instant it is in a defi-
nite position. At the very next instant, says Zeno, it is in another
position. When does the arrow go from one position to the other?
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How does the arrow manage to get to a new position by the very
next instant? The answer is that there is no next instant, whereas
the argument assumes that there is. Instants follow each other as do
the numbers of the number system, and just as there is no next
larger number after 2 or 214 there is no next instant after a given
one. Between any two instants an infinite number of others inter-
vene.

But this explanation merely exchanges one difficulty for another.
Before an arrow can get from one position to any near-by position
it must pass through an infinite number of intermediate positions,
one position corresponding to each of the infinite intermediate in-
stants. How does it ever manage to get to that near-by position if it
has to pass through an infinite number of intermediate ones? This
too 1s no difficulty. To traverse one unit of length an object must
pass through an infinite number of positions but the time required
to do this may be no more than one second, for even one second
contains an infinite number of instants.

There is, however, a greater difficulty about the motion of the
arrow. At each instant of its flight the tip of the arrow occupies a
definite position. At that instant the arrow cannot move, for an in-
stant has no duration. Hence at each instant the arrow is at rest.
Since this is true at each instant, the moving arrow is always at rest.
This paradox is almost startling; it appears to defy logic itself.

The modern theory of infinite sets makes possible an equally
startling solution. Motion is a series of rests. Motion is nothing more
than a correspondence between positions and instants of time, the
positions and the instants each forming an infinite set. At each in-
stant of the interval during which an object is in ‘motion’ it occupies
a definite position and may be said to-be at rest.

Does this mathematical concept of motion satisfy our conception
of the physical phenomenon of motion? Does not our intuition sug-
gest that motion is something more than an object’s being in differ-
ent positions at different instants of time? Here again our intuition
cannot be trusted too much. A ‘motion’ picture is no more than a
series of stills flashed on the screen at the rate of sixteen per second.
That is, it consists of motionless pictures presented to the eye at a
rate rapid enough to give the illusion of motion. This motion, then,
is no more than a series of rests. The mathematical theory of motion
should be more satisfying to our intuition for it allows for an infinite
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number of ‘rests’ in any interval of time. Since this concept of mo-
tion also resolves paradoxes it should be thoroughly acceptable.

The algebra of transfinite numbers also possesses some surprising
features that aid us in solving other difficulties in our ideas of time
and space. Consider the two classes of objects (a) and (b):

@ 1.2 34 5 6 7
(by 6 % 8 g 10 11 12

The two classes are cbviously in one-to-one correspondence for each
number in class (a) corresponds to the one below it in class (b) and
vice versa. Hence the two classes have the same number of objects
in them. This number is §o since that is the number of positive
integers. The second class, however, contains 5 numbers less than
the first class does. That is,

(1) No — 5 = No.

The curious fact represented by equation (1), namely, that if we
subtract a finite number from an infinite quantity we still have the
same infinite quantity, was expressed more dramatically if less tersely
by the Roman poet Lucretius about a.p. 100.

You may complete as many generations as you please; nor the less, how-
ever, will that everlasting death await you; and for no less long a time
will he be no more in being, who beginning with today has ended his
life, than the man who has died many months and years ago!

Since the collection of positive integers can be put into one-to-one
correspondence with the collection of positive even integers, and
since there are as many positive even integers as positive odd ones,
the number of these odd integers, as well as the number of the even
integers, is ¥o. However, the collection of all positive integers is
exactly the same as that of the odd and even positive integers to-
gether. The latter contains ¥, + ¥ or 28, objects while the col-
lection of positive integers contains ¥. Hence

(2) No = 2¥o.

Were we seriously concerned, we could use the fact expressed in
equation (2) to solve the dilemma of Tristram Shandy presented at
the beginning of this chapter. Tristram was puzzled because he could
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record only half a day’s experiences in one day, so that even if he
were to live an infinite number of years he apparently could record
only half of his life. On the other hand, it was equally clear to him
that if he were to live forever, every year of his life would be re-
corded at some time. The mathematical theory of infinite quantities
supports the latter argument. If he were to live 28 years he could
record §, years of his life. But to live 28 years is to live ¥, years,
and so Tristram could favor posterity with his completed autobiog-
raphy.

Equations such as (1) and (2) involving §, seem incorrect to us
because we are accustomed to thinking in terms of what holds for
finite numbers. Yet there is nothing illogical here. Properties that
hold for finite numbers need not hold for transfinite numbers, nor
does the reverse need to be the case. The logic of this statement is
no different from the logic of saying that though cats and dogs are
both four-legged animals there are statements true about cats that
are not true about dogs.

Our brief examination of Cantor’s contribution to the study of
infinite quantities has shown some of the valuable results to which
his theory has led. There are, however, entries on the other side of
the ledger and these too warrant some attention.

The basic concept in the study of infinite quantities is that of a
collection, a class, or a set of objects, as, for example, a set of num-
bers, a set of points on a line, and a set of instants in time. Unfor-
tunately, this seemingly simple and fundamental concept is beset
with difficulties we have not as yet considered. Let us support this
statement with a few examples.

Our first one is classic. In different forms it appears in much an-
cient literature including the New Testament. Paul in his Epistle to
Titus says of the Cretans, ‘One of themselves, even a prophet of
their own, said, The Cretans are always liars, evil beasts, slow bellies.
This witness is true.” This libel against the Cretans is more com-
monly phrased as, ‘Epimenides the Cretan affirms that the Cretans
always lie.” If Epimenides is correct, however, he is recording a truth
and so it is not true that Cretans always lie. On the other hand,
according to his own statement, he, as a Cretan, is a liar and so his
statement that all Cretans are liars is a lie. In either case, Epimenides
contradicts himself. Apparently he cannot logically make the state-
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ment that all Cretans are liars even though the fact may very well
be so. His mouth is taped with logic.

Consider next the dilemma of the honest village barber whose
advertisement proudly proclaimed that though he did not shave
those people who shaved themselves he did shave all those people
who did not shave themselves. One day, while lathering his face, it
suddenly occurred to him to ask whether he should shave himself.
If he did, he would then be one of those people who shaved them-
selves; he should, therefore, in accordance with his own advertise-
ment, not shave himself. On the other hand, if he did not shave him-
self, his own advertisement boasted that he did. In brief, if he shaved
himself he shouldn’t; if he didn’t, he should. The poor barber had
defined a class of people that did and did not include himself. Un-
fortunately, we shall have to leave our barber, with his face lathered
and razor poised, to make his own way out of his predicament.

A related difficulty may be found in the following rather amusing
example. The word ‘monosyllabic’ is not monosyllabic whereas the
word ‘polysyllabic’ is polysyllabic. The first of the two words is not
a description of itself whereas the second is. Let us agree to call all
words such as monosyllabic, which cannot be applied as descriptions
of themselves, heterological. Hence we may say that any word x is
heterological if x is not itself x. But suppose x is the word hetero-
logical. Then we are saying that the word heterological is heterologi-
cal if heterological is not itself heterological. In other words, we are
saying that something is something if it is not that something. About
all that can be said at this point is that something is wrong.

In all of these paradoxes a distinct class of objects is involved, the
class of Cretans, the class of people to be shaved, and the class of
heterological words in the last example. Analysis shows that the
statements about these classes are self-contradictory. Yet just such
difficulties were introduced into mathematics by Cantor’s use of the
class concept. It is no wonder, then, that his work aroused a storm
of criticism and became the subject of fierce controversies.

It is painful to relate that the difficulties have not been cleared
up. Because they involve problems on the borderline between logic
and mathematics, several different approaches to the two subjects
have been advanced, each of which claims to be the correct one,
though no one approach has as yet proved satisfactory. Mathemati-
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cians are now divided into schools of thought, each advocating its
own philosophy of the foundations of mathematics.

It should be added that not all of mathematics has been cast in
doubt. Moreover, even those portions that are the subject of contro-
versy need not be discarded even temporarily. There is fortunately
a pragmatic sanction for these portions. Just as the soundness of the
calculus was debated all the while it was being used to produce
majestic laws, so today the debatable theorems are being applied and
are proving highly useful. The history of the calculus is encouraging,
too, because just as the difficulties there were finally resolved so we
may expect solution of the current ones.

The doubts have at least given mathematicians the opportunity to
spoof their own work. Recognition of the fact that each age has the
problem of rigorizing what it creates led E. H. Moore, a prominent
American mathematician, to remark, ‘Sufficient unto the day is the
rigor thereof.” Other mathematicians have expressed more cynicism.
A proof, runs one quip, tells us where to concentrate our doubts.
Logic, says another, is the art of going wrong with confidence.

Despite the paradoxes to which Cantor’s work led and which still
remain to be cleared up in a thoroughly satisfactory manner, many
mathematicians have come to sec that he made the only real progress
man is capable of making. Mathematicians create by acts of insight
and intuition. Logic then sanctions the conquests of intuition. It is
the hygiene that mathematics practices to keep its ideas healthy and
strong. Moreover, the whole structure rests fundamentally on uncer-
tain ground, the intuitions of man. Here and there an intuition is
scooped out and replaced by a firmly built pillar of thought; how-
ever, this pillar is based on some deeper, perhaps less clearly defined
intuition. Though the process of replacing intuitions by precise
thoughts does not change the nature of the ground on which mathe-
matics ultimately rests, it does add strength and height to the
structure.

We feel obliged to conclude this chapter with a caution. Puzzles
and paradoxes have been so much to the fore that the reader may
regard the theory of infinite numbers as a mathematical divertisse-
ment. This is far from the correct evaluation. We should see rather
how exact thinking has been applied to the shadow of one of the
vaguest and most intangible intuitions. In rendering precise the
notion of quantity as applied to infinite sets of objects, Cantor dis-
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posed of reams of philosophic disputes which had taken place from
Aristotle’s time right up to modern times.

The theory of infinite numbers is only one of the creations of the
nineteenth-century critical thinkers. Almost bizarre in its contents
it is nevertheless both logical and useful. The next mathematical
creation we shall examine will strike the uninitiated as even more
fantastic; yet it proved to be sound enough to revolutionize mathe-
matical, scientific, and philosophical thought. It would seem as
though the nineteenth-century mathematicians were being forced
farther and farther from normal channels of thought in order to re-
store to mathematics the rigor which the Greeks first injected but
which the seventeenth century lost sight of in its haste to keep pace
with scientific activity.



XXVI

New Geometries, New Worlds

I have made such wonderful discoveries that I am myself
lost in astonishment: Out of nothing I have created a new
and another world. JOHN BOLYAI

The first man to challenge Euclid was Euclid himself. The creator
of the most widely and most completely accepted system of thought—
the abode of truth, and the birthplace of philosophies and sciences—
doubted his results even before he issued them to the world. Euclid’s
questioning of himself marked the beginning of a two-thousand-year
‘behind the scenes’ attack on the obvious.

It is well known that Euclidean geometry is founded on ten
axioms whose truth appears so self-evident that no ‘sane’ man would
dare question them. From this sound basis impeccable logic pro-
duced more ‘truths’ just as appealing and as immediately acceptable
as the axioms. Two millenniums of application climaxed by the suc-
cesses of the Newtonian era added practically incontrovertible evi-
dence of the soundness and reliability of these truths. Century after
century buttressed logic with experience and common sense with
tradition, until Euclid’s system acquired inviolate sanctity. By 1800
educated people were far more likely to swear by the theorems of
Euclid than by any statement in the Bible.

Whether a person appealed to experience, accepted the Kantian
philosophy, or inclined to the obvious, the inescapable conclusion
appeared to be that Euclid was truth and truth, Euclid. Despite this
enviable position, which Euclidean geometry possessed from the out-
set and which time enhanced, a few thinkers, including Euclid, were
not at ease. They were disturbed by two apparently innocent axioms.

The first of these says that a line segment can be extended as far

as one pleases in either direction. The second one is the axiom on
410
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parallels, which says that through a point P not on a line L there
passes one and only one line M (in the plane of P and L) that does
not meet L no matter how far M and L are extended (fig. 77). If the
axioms of Fuclidean geometry are accepted because experience with
physical space warrants our doing so, then these axioms are open to
some doubt. No man has had direct experience with what happens
in space more than a few miles beyond the Earth. All we can really
say is that these axioms appear to be true in the limited regions in
which we actually move. And even here we cannot be too sure of
our assertions, for it was pointed out in the chapter on projective
geometry that we never see parallel lines even in the portion of

P M

L

Figure 7. Euclid’s parallel axiom

space immediately around us. As we look into the distance along
lines Euclid refers to as parallel, we find that they seem to meet.

Euclid reveals his concern about these axioms by the manner in
which he uses them. He does not use the parallel axiom, which is
the more questionable of the two, until he has proved as many the-
orems as he can without it. He is equally cautious about the un-
limited extensibility of the straight line. An examination of the
theorems of his geometry shows that he uses line segments (portions
of lines between two points) but never supposes that he has an infi-
nite straight line to start with. When necessary he extends a segment
in either direction only as far as the theorem requires. It should not
be inferred that Euclid doubted the truth of these axioms; rather,
because of their seemingly weighty implications, he would have pre-
ferred, no doubt, to derive their contents as consequences of simpler
axioms.

A few hypercritical thinkers in every age following that of Euclid
also hesitated to use as axioms statements on which any hard-headed
businessman would bet his bottom dollar. To eliminate any linger-
ing qualms these men from Missouri all tried the same thing. They
concentrated on the parallel axiom and sought either to deduce it
from the other axioms or to find a more acceptable substitute. Sev-
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eral hundred such worthy attempts on the part of the best mathe-
maticians ended in failure, however. By 1800 the parallel axiom had
come to be labeled the scandal of geometry.

It is hardly desirable, nor would it be too profitable, to review
most of the efforts. The work of one man, however, the Jesuit priest
Girolamo Saccheri, a professor of mathematics at the University of
Pavia and a keen student of logic, merits our attention. Saccheri had
a brand new idea. His novel attack on the problem of the parallel
axiom was to argue in effect: Given a line L and a point P, then
either (a) there is exactly one parallel to L through P, or (b) there
are no parallels to L through P, or (¢) there are at least two parallels
to L through P. Alternative (a) was Euclid’s parallel axiom. Suppose
it were replaced by alternative (b), and the latter together with the
other nine axioms of Euclid were shown to lead to contradictory
theorems. Then surely alternative (b) could not be correct. Similarly,
if the use of alternative (¢) and the other nine Euclidean axioms led
to contradictory theorems, then alternative (c) could not be correct.
Then it would follow that Euclid’s parallel axiom is the only pos-
sible one.

By using alternative (b) together with the other nine Euclidean
axioms Saccheri did deduce theorems that contradicted each other.
But he failed to deduce contradictions from the nine Euclidean
axioms and the alternative axtom postulating the existence of at
least two parallels. Though his efforts were determined and exten-
stve, and though some of his deductions were indeed strange when
compared with analogous results in Fuclidean geometry, contradic-
tion there was not.

Sacchert was on the threshold of an epoch-making discovery but
he refused to step over it. For the moment we shall leave it to the
reader to determine the conclusion Sacchert should have drawn from
his failure to deduce inconsistencies. As for Saccheri himself, he was
so unprepared for the strange theorems he established from his set
of axioms that he decided Euclid’s parallel axiom must be right.
Accordingly, in 1733 he published his results in a book titled Euclid
Vindicated from All Defects. Apparently when one man sets out to
vindicate another he will most likely do so regardless of the facts.

One explanation for Saccher!’s failure as well as the many others
is that great as the mathematicians were who approached the prob-
lem presented by the parallel axiom, none was discerning enough
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to recognize and reject a two-thousand-year-old habit of thought. But
within the mathematical world of the early nineteenth century a
change in the intellectual milieu took place, bringing with it a
sweeping, critical re-examination of fundamental beliefs. Undoubt-
edly this change accounts for the fact that three men, Gauss, Loba-
tchevsky, and Bolyai, with no knowledge of each other’s thoughts,
discovered the correct interpretation of Saccheri’s work at about the
same time; Lobatchevsky and Bolyai published their results within
a few years of each other.

Of these three the greatest, and one who ranks with Newton and
Archimedes, was Karl Friedrich Gauss. Karl showed unbelievable
precocity in many fields and a particular predilection for mathe-
matics. When as a young man he proved that the regular polygon
of 14 sides could be constructed with straightedge and compass, he
was so delighted that he abandoned his intention of becoming a
philologist in order to study mathematics. He soon contributed mas-
terful work to many branches of the subject and also achieved note
as an inventor and experimentalist. Though his contributions were
no less numerous and no less profound than those of other mathe-
maticians, Gauss was extremely modest. He said, ‘If others would
but reflect on mathematical truths as deeply and as continuously as
I have, they would make my discoveries.” Those who believe that
genius is 9g per cent perspiration as well as those who despair of
their mathematical abilities may find comfort in Gauss’s statement.

Gauss was still a youth when the problem of the parallel axiom
first came to his attention. At first he worked hard to replace the
paraliel axiom by a simpler one, and he failed. He then followed
Saccheri’s line of thought by adopting a parallel axiom contradicting
Fuclid’s—-essentially Saccheri’s third alternative—and by deducing
consequences from this new axiom and the other nine of Fuclid’s.
Like Saccheri he arrived at strange theorems. Instead of allowing the
strangeness to frighten him Gauss fought fire with fire. He drew the
brand new, astounding conclusion which the great and near-great
had failed to consider. He decided that there can be other geometries
as valid as Euclid’s.

Gauss had the intellectual courage to create non-Euclidean geom-
etry but not the moral courage to face the mobs who would have
called the creator mad, for the scientists of the early nineteenth cen-
tury lived in the shadow of Kant whose pronouncement that there
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could be no geometry other than Euclidean geometry ruled the in-
tellectual world. Gauss's work on non-Euclidean geometry was found
among his papers after his death.

Of the two other men who deserve honor for the creation of non-
Euclidean geometry the first was the gifted Nicholas Lobatchevsky.
Born in 1793 to a poor Russian family, he studied at the University
of Kasan and at the age of twenty-three became a full professor
there. Lobatchevsky, too, was attracted to the problem of the parallel
axiom. He says that he was struck by the fact that two thousand
years of effort by the greatest mathematicians had failed to produce
a better axiom. And so, like Saccheri and Gauss, he built a new
geometry on the basis of a parallel axiom contradicting Euclid’s. The
almost unbelievable theorems to which he was led did not discour-
age him any more than they had Gauss. Sound reasoning had led to
them and sound reasoning was the unquestionable guide. And so
Lobatchevsky, too, affirmed the radical but inescapable conclusion:
There are geometries different from Euclid’s and just as valid.

The man who shares honors with Lobatchevsky for the discovery
and the courage to publish his work on non-Euclidean geometry is
the Hungarian, John Bolyai. Like the other two he was blessed by
the gods and, in addition, was encouraged and developed by his
father Wolfgang, also a mathematician. Wolfgang had himself been
bitten by the bug of the parallel axiom problem and had spent many
vain years in work upon it. He bequeathed it to his son who, in
1825, at the age of twenty-three, suddenly saw the light. There are
axioms contradicting Euclid’s, he contended, that can nevertheless
serve as the basis for new geometries. John proceeded to build one.
On the urging of his father, he published his work in 1833 as an
appendix to his father’s text.

How were the epoch-making documents of Lobatchevsky and
Bolyai received? How did scientists react to the startling news that
Euclidean geometry now had rivals? How did the very rational phi-
losophers greet the most thoroughgoing refutation of the leading
philosophy of the times? The works of Lobatchevsky and Bolyai
were completely neglected. Moreover, in 1847 Lobatchevsky was dis-
missed by the University, despite brilliant contributions and un-
selfish devotion to his work. If Bolyai had been a professor rather
than an Austrian army officer, he might have suffered the same fate.

About thirty years after Lobatchevsky and Bolyai published their
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monumental work, Gauss’s correspondence on non-Euclidean geom-
etry was published posthumously along with other papers. His name
attracted attention to the subject and shortly thereafter the mathe-
matical world began to read Lobatchevsky and Bolyai.

To appreciate their work on the problem of the parallel axiom
we must go back for a moment. Consider any straight line L (fig. ¥8)

Q Q Q Q Q Q
Figure 78. Euclid’s parallel as a unique limiting line

and any point P not on L. Fuclid’s parallel axiom asserts that there
is one and only one line K through P which does not meet L. Now
let Q be any point on L. As Q moves to the right, the line PQ re-
volves counterclockwise about P and seems to approach the line K.
In like manner, as @ moves to the left along L, the line PQ rotates
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Q Q Q Q
Figure '79. The parallel axiom of Lobatchevsky and Bolyai

clockwise about P and again approaches K. In each case, then, PQ
approaches one and the same limiting line K.

Bolyai and Lobatchevsky, however, assumed that the two limiting
positions of PQ are not the same line K but two different lines
through P, and that these limiting lines, M and N (fig. 479), do not
meet L. Moreover, they assumed that every line through P and be-
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tween M and N, such as J, does not meet L. Hence Bolyai’s and
Lobatchevsky’s parallel axiom affirms the existence of an infinite set
of parallels to L through P. (These men reserved the word parallel
for just the limiting lines M and N, but we shall use it to denote any
line through P that does not meet L.)

The reader will perhaps feel, along with the mathematicians of
Bolyai’s and Lobatchevsky’s time, that this 1s a ridiculous assump-
tion to make. The diagram suggests that M and N will meet L if all
three lines are extended far enough. Let us remember, however,
that Bolyai and Lobatchevsky were interested in picking an axiom
which, regardless of whether or not it describes the space we believe
we live in, would be a logical alternative to Euclid’s. And since the
theorems to be derived from this axiom and the remaining Euclid-
ean axioms would depend only on reasoning and not at all on accord
with diagrams, the failure of the axiom to correspond with visual
sensations 1s irrelevant.

What theorems were Bolyai and Lobatchevsky able to prove with
their axioms? Of course, all the theorems of Euclid’s geometry
proved without the use of his parallel axiom are, automatically,
theorems in Bolyai's and Lobatchevsky’s geometry, since these men
retained the other axioms of Fuclid. As examples of such theorems
we might mention these: Vertical angles are equal; from a point P
at most one perpendicular can be drawn to a straight line; and, in
a triangle with equal sides, the angles opposite these sides are equal.

Astonishing 1s the word for the theorems in the geometry of
Bolyai and Lobatchevsky that do depend on their parallel axiom
and therefore are not found in Euclid. These theorems, like all
mathematical theorems, are proved by deductive methods of reason-
ing familiar to the reader; unlike the case in Euclidean geometry,
however, figures are not nearly so useful in suggesting the steps of
the proofs or in illustrating the meanings of the theorems.

Most unexpected is the theorem that the sum of the angles of any
triangle is always less than 180°. Moreover, of two triangles, the one
with a larger area has a smaller angle sum. Even more surprising is
the fact that the new geometry wipes out a vital concept of Euclidean
geometry, that is, that two geometric figures may have the same shape
but different sizes. We say, in such a case, that the figures are similar
but not congruent. In the new geometry two similar triangles must
also be congruent. As a final example of a new theorem, we mention
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this one: The distance between two parallel lines approaches zero
in one direction along the lines and becomes infinite in the other
direction.

Bolyai and Lobatchevsky had succeeded in erecting a new geom-
etry with many surprising theorems. But was their work any more
than an exercise in logic? Let us realize, first, that hundreds of de-
ductions in the new geometry had produced no theorems contra-
dicting each other. This meant that the old parallel axiom could not
be deduced from the other Euclidean axioms; otherwise the assump-
tion of the new one would surely have led to-contradictions within
the system. It was not exactly news that the Euclidean parallel axiom
could not be deduced from other Euclidean axioms. This fact had
been suspected before.

The second implication in the work of Bolyai and Lobatchevsky
was not anticipated. It is that we could not hope to establish the
incontrovertible truth of the Euclidean parallel axiom by showing
that any alternative produced contradictions. It was clear, therefore,
that both of the schemes used by earlier mathematicians to vindicate
the parailel axiom would never have been successful.

But the greatest significance of the new geometry was completely
unexpected. Though the logical exercise was over the conclusion
lingered on in people’s minds: There are geometries different from
Euclid’s. A mathematician who possessed this knowledge was like a
boy with an air rifle in his hands. The temptation to use it was too
strong to resist. Fuclidean geometry was known to be an accurate
description of physical space. The non-Euclidean geometry of Bolyai
and Lobatchevsky, on the other hand, did not seem and was not
intended to apply to the physical world—but could it?

First reactions to this question are generally negative. If Euclidean
geometry is correct, how can this new, conflicting geometry also be
correct? Moreover, how can such absurd theorems apply to our
familiar world? A little thought indicates that first reactions may be
too hasty. What guarantee do we have that Euclidean geometry is
correct? True it has been used for thousands of years. It also has the
favor of long-established habits of thought. But let us recail Euclid’s
own reasont for being concerned about the parallel axiom. Was it
not that it makes an affirmation about regions of space far removed
from man’s daily experience, a space so vast that the accessible
regions are in comparison only a dot on the surface of the Earthrs
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Who of us knows the geometry of the universe in the vicinity of
Mars, or for that matter even ten miles above the surface of the
Earth? By what right do we assume that it must be the same as what
seems to apply on Earth? Euclidean geometry may be no better than
the hundreds of scientific laws that served well enough in their day
but ultimately had to be discarded.

After carefully considering just this problem Gauss suggested a
criterion for determining the truth of Euclidean geometry. The sum
of the angles of a triangle equals 180° in this geometry but is less
than 180° in the new geometry. Hence measuring the angles of a
triangle should decide which geometry fits the physical world. For
two reasons a very large triangle had to be chosen. In the first place,
the error in sighting is greater in a smaller triangle. In the second
place, it is a theorem of Lobatchevsky’s and Bolyai’s geometry that
the angle sum of a triangle approaches 180° as the triangle shrinks
in size. For a small triangle the sum might be so close to 180° that
measuring instruments might not be sensitive to the difference.

Gauss, himself, performed the experiment. He stationed an ob-
server on each of three mountain peaks. Each observer measured the
angle formed by his lines of sight to the other two observers. The
sum of the angles of the triangle turned out to be within 2” of 180°,
so close that the difference could be charged to errors of measure-
ment. Hence the experiment was not decisive.

The provoking aspect of Gauss’s triangle test is that even under
the best of experimental conditions it could never prove that space
is Euclidean, for even if the measured angle sum should be 180°
allowance would always have to be made for crrors of measurement
and hence for the possibility that the true sum is less than 180°.
Actually the test involved two unwarranted assumptions, either one
of which could invalidate a conclusion drawn from it. The first of
these was that the triangle formed by three mountain tops is large
enough to be decisive. The second assumption was that the light
rays which formed the sides of the triangle follow straight lines. The
rays may actually curve slightly but imperceptibly.

While Gauss’s test can be dismissed as an interesting but incon-
clusive experiment, the larger question of the applicability of non-
Euclidean geometry still deserves attention. The surprising fact that
emerges from all attempts to decide which of the two geometries fits
physical space is that both fit equally well. We have already indi-
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cated that in a small triangle the new geometry calls for an angle
sum close to 180° and the smaller the triangle the closer must the
sum be to 180°. If we applied non-Euclidean geometry and accord-
ingly used angle sums that are slightly less than 180° no harm would
be done from the practical standpoint. Similarly, no harm would be
done if we assumed that given a point P and a line L an infinite
number of parallels to L exist through P and in the plane of P
and L.

We might think that the new geometry cannot be applied to the
physical world because it asserts that similar triangles must be con-
gruent. It certainly seems possible to construct two physical triangles
that are similar but not congruent. In fact, one triangle could be
made very large and the other very small. No matter how carefully
the two triangles are constructed, however, we cannot be sure they
really are similar—that is, that corresponding angles are exactly
equal. The smaller triangle could have a larger angle sum, in accord-
ance with the new, non-Euclidean geometry, but the difference
might not be measurable. Hence for all practical purposes it would
not matter whether we accepted the assertion of the new geometry.
In other words, there is no way of deciding which geometry applies
to physical space; either one could be used. Our prejudices and
habits favor Euclidean geometry, which may also be somewhat
simpler than the non-Euclidean geometry. But these reasons for pre-
ferring it do not discredit the applicability of the new geometry.

No doubt the reader is not satisfied. Perhaps he can be diverted
with other, more pleasant arguments which show that non-Euclidean
geometry can be applied to the physical world.

Let us return for a moment to Euclidean geometry. Imagine an
enormous sheet of paper extending indefinitely in all directions.
This sheet of paper is a physical illustration of the mathematical
plane, the plane in which the theorems of Euclid’s geometry hold.
Now suppose we alter the shape of this vast sheet of paper by bend-
ing the left and right sides upward somewhat (fig. 80) so that it
forms a curved surface, which, however, continues to extend in-
definitely in all directions as did the plane. Such a surface is known
as a cylindrical surface. As a result of the change in shape, most
straight lines of the former plane become curves which, like the
straight lines in the plane, are the shortest paths between the points
they join on the surface. We shall call such curves geodesics. Two
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straight lines that were parallel in the plane become parallel geo-
desics, that is geodesics which do not meet on the surface. Triangles
of the original plane become figures formed by arcs of geodesics on
the surface. We shall call the new figures ‘triangles’ also. Circles on
the plane give rise to figures we shall call ‘circles.’

We come now to a very startling fact. Every axiom of Euclidean
geometry holds for the figures on the cylindrical surface with the one
provision—that we interpret the words line, triangle, and circle as
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Figure 80. A new pictorial interpretation of Euclidean geometry

just suggested above. Hence the theorems of Euclidean geometry,
which follow from the axioms by deductive reasoning, a process com-
pletely independent of the pictures we may draw, also hold for fig-
ures on the curved surface. To take one instance, the sum of the
angles of a ‘triangle’ on the surface is 180°.

The reader may object to the argument above on the ground that
straight lines and figures defined in terms of straight lines no longer
have the proper meaning; they have lost their straightness. Now, how-
ever, we take advantage of a fact first pointed out in Chapter 1v,
namely, that the basic concepts of geometry such as point and line
are undefined. We use only the properties of these concepts that are
explicitly stated in the axioms. Hence if some new physical picture
of line, say, has the properties required by the axioms, it is possible
to adopt this new picture. Therefore it is logically justifiable to asso-
ciate a completely new physical picture with all of Euclidean ge-
ometry.
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The argument just made for the new physical interpretation of
Euclidean geometry applies as well to non-Euclidean geometry. And
if we do take advantage of our liberty to choose the physical inter-
pretation of the line and other figures we obtain an intuitively ac-
ceptable interpretation of the new geometry.

Figure 81 illustrates a surface known as a pseudosphere. The
curves on the pseudosphere which are the shortest paths between
points on the surface—these special curves are also called geodesics—
have the properties that straight lines possess in the axioms of Loba-

Figure 81. Pictorial interpretation of Lobatchevsky’s and Bolyai’s non-Euclidean
geometry

tchevsky and Bolyai. For example, the axiom that two points deter-
mine one and only one straight line applies to these geodesics. Two
points on the pseudosphere (C and D in fig. 81) determine one and
only one geodesic, or shortest path, between them. In like manner,
the parallel axiom of Lobatchevsky and Bolyai, which says that
through a point P not on a line L there is an infinite number of lines
that do not meet L, applies to the geodesics on the pseudosphere.

Because the axioms of Lobatchevsky and Bolyai fit the geodesics
on the pseudosphere, the theorems, as logical consequences of the
axioms, must also apply. Thus the theorem that the sum of the angles
of a triangle is less than 180° holds for triangle CDE formed by the
arcs of geodesics. We have therefore obtained a visualization of the
non-Euclidean geometry at the cost merely of a slight and justifiable
change in the picture of the straight line.

Having made ‘sense’ of the new geometry let us return to our
original question. Can the new geometry be descriptive of the phys-
ical world in which we live? The answer, as the reader may have
anticipated, is that the geometry of physical space depends on the
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physical meaning we attach to the concept of straight lines. Experi-
ence tells us that if straight line is taken to be a stretched string,
Euclidean geometry applies very well. It is neither necessary nor
desirable, however, to allow straight line to mean a stretched string
in all physical applications. Let us consider for a moment people
who live in mountainous country and who are interested in the
geometry of the surface of their country. The most useful physical
interpretation of the straight line for them is the geodesic, that is,
the curve of shortest distance between two points. The first surpris-
ing fact about these ‘straight lines’ is that they change shape from
one part of the country to another, depending on the shapes of the
hills and valleys. What axioms do these ‘straight lines’ obey? Almost
surely not the Euclidean ones. For example, the topography of the
area may be such that there are several shortest paths between some
pairs of points. There may be many geodesics through a given point
that do not meet a particular geodesic; and so forth.

In astronomical measurements, too, the stretched string is not the
practical interpretation of the straight line. Here the light ray must
serve instead. And what geometry fits best when light rays are used
as straight lines? We shall leave this question with the reader until
the next chapter. Meanwhile, we had better return to the mathemat-
ical account of non-Fuclidean geometry. There are more mathemat-
ical worlds to be examined.

Lobatchevsky and Bolyai concentrated on Euclid’s parallel axiom
but accepted the other axiom in Euclid that is almost as question-
able, namely, the axiom that says a line segment can be extended
indefinitely in either direction. Here, too, is an axiom purporting
to describe what happens in space trillions of miles from our Earth.
How can we be sure of its truth, that is, its applicability to the
physical world?

Not long after the work of Bolyai and Lobatchevsky on the con-
cept of parallelism, the piercing glances of mathematicians lighted
on the infiniteness of the straight line and sought to determine the
wisdom of this axiom. The sickly, precocious Bernhard Riemann
(1826-66), who had to beg his father, a German Lutheran pastor, for
permission to abandon his training for the ministry so that he might
study mathematics, undertook to pursue possible alternatives to this
axiom.

One of his novel thoughts was that we must distinguish between
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endlessness and infiniteness. For example, the equator on the Earth
is endless but finite. In view of this distinction Riemann proposed
an alternative to Euclid’s axiom on the infiniteness of the straight
line, namely, the axiom that all lines are finite in length but endless.

This thought was then followed by reflections on the parallel axiom
similar to those of Lobatchevsky and Bolyai but leading in this case
to a different conclusion. As R moves to the left along L (fig. 82) and
as (J moves to the right, both points must ultimately meet, for Rie-
mann supposed the line L to be finite. The line PR will, as a result,
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Figure 82. The geometrical basis for Riemann’s parallel axiom

rotate around P into PQ without ever losing contact with L. That is,
there should be no line through P parallel to L. Figure 82 does not
tell us how this complete rotation of PR about P is possible with our
usual conception of the straight line, but the drawing is not intended
to do more than suggest Riemann’s thought. These reflections sug-
gested to Riemann that he adopt along with the finiteness of the
straight line an axiom to the effect that there are no parallel lines.

As if two radical departures from Euclid were not encugh, Rie-
mann proposed a third one: instead of requiring that two points
determine one and only one line, Riemann adopted the axiom that
two points may determine more than one line.

Before proceeding we remind the reader that these axioms are to
be accepted for the moment purely as the basis for a logical develop-
ment of a new geometry. The relation between this rather arbitrary
system and the real world will be considered later.

The geometry of Riemann, like that of Lobatchevsky and Bolyai,
has some theorems in common with those of Euclid. The theorem
that vertical angles are equal and the theorem that angles opposite
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equal sides of a triangle are also equal hold in all three geometries,
because these theorems depend only on axioms that are common to
the three geometries.

Some of the theorems in Riemann’s geometry that differ from
Euclid’s are striking. For example: All the perpendiculars to a
straight line meet in a point (fig. 83). Another fact in this strange
new world is that two straight lines enclose an area (fig. 84). As in
the geometry of Lobatchevsky and Bolyai we find that triangles which
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Figure 83. All the perpendiculars to a line meet in one point
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Figure 84. Two straight lines enclose an area

are similar are also congruent. Two other theorems might almost be
anticipated. The first states that the sum of the angles of any triangle
is greater than 180°. The second states that of two triangles the one
with larger area has the greater angle sum.

We may now raise the same question that we raised with regard
to the geometry of Lobatchevsky and Bolyai. Has Riemannian geom-
etry any possible significance beyond that of an intellectual exercise
for the mathematicians? Here again the answer is yes. It is possible
to apply Riemann’s geometry to the physical world with the usual
understanding of straight line and never detect any differences be-
tween the assertions of the geometry and the physical situation. The
argument here is precisely the one that was made in connection with
the geometry of Lobatchevsky and Bolyai.

Moreover, by changing the picture of the straight line we may find
other, intuitively satisfying interpretations of Riemann’s geometry.
Just as we were able to picture Euclidean geometry on a cylindrical



NEW GEOMETRIES, NEW WORLDS 425

surface and Lobatchevsky’s and Bolyai’s geometry on a pseudosphere,
so we may picture Riemann’s geometry on the familiar sphere. The
curve that connects two points on a sphere by the shortest route—
that is, the curve that will be our picture of the straight line—is the
arc of the great circle through the two points. By a great circle we
mean one whose center is also the center of the sphere. Thus of the
two circles through 4 and B (fig. 85), the circle ABCDE is the great
circle whereas the circle ABFGH is not.

Figure 85. A pictorial interpretation of Riemann’s geometry

Let us see whether the axioms of Riemann’s geometry apply to
the sphere, provided we interpret straight line of the axioms to
mean great circle on the sphere. In the first place, great circles are
endless and finite in length. Second, there are no parallel lines on
the sphere, for any two great circles meet. In fact, they meet not
once but twice. For example, the great circles ABCDE and MNPD
meet at N and D. The axiom that two points may determine more
than one line is also fulfilled on the sphere. Two points such as
N and D in figure 85 have more than one great circle through them,
while through two points such as 4 and B only one great circle
passes.

Since the axioms of Riemann’s geometry correctly describe facts
about the sphere, the theorems, which are derived by valid deduc-
tive reasoning, must also be true on the sphere. Let us check a few.
One theorem states that all the perpendiculars to a straight line meet
in a point. Taking the great circle L of figure 86 as our straight line,
we find that all the perpendiculars to L meet at P. If, for example,
L were the equator on the Earth, P would be the North or South
Pole.
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Another theorem states that the sum of the angles of a triangle
is greater than 180°. Since the straight lines of our axioms are great
circles, a triangle is the figure formed by arcs of great circles. Such
a triangle is illustrated by 4BP in figure 86. Since two of the angles
of this triangle are right angles, the sum of the three angles is neces-
sarily greater than 180°. This fact i1s true of every ‘triangle’ on a
sphere.

It is not necessary to labor an already obvious point. Every theo-
rem of Riemann’s geometry can be interpreted on the sphere mevrely

Figure 86. All the perpendiculars to a great circle on a sphere meet in one point

by thinking of the straight lines in the theorems as great circles on
the sphere. Hence we can give geometrical and intuitively satisfying
meaning to Riemann’s geometry. More than that, this geometry sup-
plies exact answers to practical and scientific problems involving
geometrical relationships on the surface of the sphere. Hence it is,
certainly to that extent, a geometry of the physical world. In fact,
every argument for the theory that our physical world could be non-
Euclidean in the sense of Lobatchevsky’s and Bolyai’s geometry ap-
plies equally well to Riemann’s geometry. The applicability of non-
Euclidean geometries to the world in which we live will be discussed
further under the subject of relativity.

In retrospect, the history of the creation of non-Euclidean geome-
tries 1s the history of the blindness of human beings, great and small.
Man lives on the surface of the Earth. Suppose he were to set about
constructing a geometry to fit this surface directly instead of regard-
ing it as a special surface in the three-dimensional Euclidean world.
What kind of geometry would he develop? The ‘line’ in this geom-
etry for the surface of a sphere should obviously be the curve that
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joins any two points by the shortest route, for this curve would be
the most useful. This curve, as we have seen, is the great circle join-
ing the points. On the other hand, the straight line in the familiar
sense of Euclidean geometry would certainly not be chosen as the
basic curve, for it does not even exist on the surface of a sphere.

What axioms would a geometer choose for his great circles? Why,
none other than those Riemann selected, a system of axioms in which
no parallel lines exist and in which the line is finite in length. In
other words, the natural geometry, the practical geometry, the com-
mon-sense geometry for us earth-bound mortals is Riemannian ge-
ometry.

For thousands of years this geometry has been right under the feet
of man. Yet during all those years the greatest mathematicians never
once sought to test their attack on the parallel axiom by checking
with the geometry of the sphere. And as a climax to these thousands
of years the great Kant built his profound philosophy on the incon-
trovertible truth of Euclidean geometry, indeed on the impossibility
of conceiving of any other geometry. Yet all this time he was living
on, if not in, a non-Euclidean world.

How is it, then, that though geometry arose from measurements
made on the Earth, Fuclidean geometry was developed first? The
answer is that to human beings living in a very limited region, the
Earth does indeed appear flat, and the shortest distance on a flat sur-
face is indeed the straight line in the commonly accepted sense of
the term. With this stretched-string picture of the line the axioms
and theorems of Euclidean geometry followed naturally. Once the
geometry of flat surfaces was developed, the sphere had to be intro-
duced within the framework of Euclidean geometry. No one, not
even the Greeks, who were especially fond of the sphere, thought to
approach the geometry of the sphere through a set of axioms designed
to fit such a surface directly. This history shows that men are ruled
as much by habits of thought as by physical habits, social customs,
and conventions. Surely the unsuccessful precursors of Lobatchevsky
and Bolyai did not lack technical skill or the ability to master difhi-
cult mathematics. They failed to solve the problem of the parallel
axiom only because they were unable to break a habit of thought—
Fuclidean geometry. The history of this mental inertia is an excel-
lent example of what Lecky, in his History of Rationalism in Europe,
has described as that spirit, that Zeitgeist of an age, which predisposes



428 MATHEMATICS IN WESTERN CULTURE

people to points of view or beliefs independent of arguments for or
against. So it was with Kant and all the mathematicians up to 1800.
The belief in the truth, the unassailableness, the uniqueness of Eu-
clidean geometry precluded anyone from even considering the possi-
bility of another geometry, even though a non-Euclidean geometry
lay right before them.

The importance of non-Euclidean geometry in the general history
of thought cannot be exaggerated. Like Copernicus’ heliocentric
theory, Newton’s law of gravitation, and Darwin’s theory of evolu-
tion, non-Euclidean geometry has radically affected science, philos-
ophy, and religion. It is fair to say that no more cataclysmic event
has ever taken place in the history of all thought.

First, the creation of non-Euclidean geometry brought into clear
light a distinction that had always been implicit but never recog-
nized—the distinction between a mathematical space and physical
space. The original identification of the two was due to a misunder-
standing. Fleeting visitors to our minds, sensations of sight and touch,
suggested that the axioms of Euclidean geometry were true of phys-
ical space. The theorems deduced from these axioms were checked
with further sensations of sight and touch and, behold, they checked
perfectly—at least as far as these sensations could reveal. Euclidean
geometry was therefore held to be an exact description of physical
space. This habit of thought became so well established over hun-
dreds of years that the very notion of a new geometry failed to make
sense. Geometry meant the geometry of physical space and that ge-
ometry was Euclid’s. With the creation of non-Euclidean geometry,
however, mathematicians, scientists, and laymen were ultimately
compelled to appreciate the fact that systems of thought based on
statements about physical space are different from that physical space.

This distinction is vital to an understanding of the developments
in mathematics and science since 1880. We must say now that a math-
ematical space takes on the nature of a scientific theory. It is applied
to the study of physical space as long as it fits the facts of experience
and serves the needs of science. However, if one mathematical space
can be replaced by another in closer agreement with the expanding
results of scientific work, then it will be replaced just as the Ptole-
maic theory of the motion of the heavenly bodies was replaced by
the Copernican theory. Nor should the reader be surprised if he dis-
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covers that this possibility has materialized by the time he reaches
the next chapter.

We should regard any theory about physical space, then, as a
purely subjective construction and not impute to it objective reality.
Man constructs a geometry, Euclidean or non-Euclidean, and decides
to view space in those terms. The advantages in doing so, even though
he cannot be sure space possesses any of the characteristics of the
structure he has built up in his own mind, are that he can then think
about space and use his theory in scientific work. This view of space
and of nature generally does not deny that there is such a thing as
an objective physical world. It merely recognizes the fact that man’s
judgments and conclusions about space are purely of his own making.

The creation of non-Euclidean geometry cut a devastating swath
through the realm of truth. Like religion in ancient societies math-
ematics occupied a revered and unchallenged position in Western
thought. In the temple of mathematics reposed all truth, and Euclid
was its high priest. But the cult, its high priest, and all its attendants
were stripped of divine sanction by the work of the unholy three:
Bolyai, Lobatchevsky, and Riemann. It is true that in undertaking
their research these audacious intellects had in mind only the logical
problem of investigating the consequences of a new parallel axiom.
It certainly did not occur to them at the outset that they were chal-
lenging Truth itself. And as long as their work was regarded merely
as an ingenious bit of mathematical hocus-pocus, no serious ques-
tions were raised. The moment men realized, however, that the non-
Euclidean geometries could be valid descriptions of physical space,
an inescapable problem presented itself. How could mathematics,
which had always claimed to present the truth about quantity and
space, now offer several contradictory geometries? No more than one
of these could be the truth. Indeed, and even more disturbing, per-
haps the truth was different from all these geometries. The creation
of the new geometries, therefore, forced recognition of the fact that
there could be an ‘if’ about all mathematical axioms. If the axioms
of Euclidean geometry are truths about the physical world then the
theorems are. But, unfortunately, we cannot decide on a priori
grounds that the axioms of Euclid, or of any other geometry, are
truths.

In depriving mathematics of its status as a collection of truths, the
creation of non-Euclidean geometries robbed man of his most re-



430 MATHEMATICS IN WESTERN CULTURE

spected truths and perhaps even of the hope of ever attaining cer-
tainty about anything. Before 1800 every age had believed in the
existence of absolute truth; men differed only in their choice of
sources. Aristotle, the fathers of the Church, the Bible, philosophy,
and science all had their day as arbiters of objective, eternal truths.
In the eighteenth century human reason alone was upheld, and this
because of what it had produced in mathematics and in the math-
ematical domains of science. The possession of mathematical truths
had been especially comforting because they held out hope of more
to come. Alas, the hope was blasted. The end of the dominance of
Euclidean geometry was the end of the dominance of all such abso-
lute standards. The philosopher may still claim the conviction of
profound thought; the artist may passionately insist on the validity
of the insight which his technical skill makes manifest; the religionist
may fill the largest cathedral with the echoes of divine inspiration;
and the romantic poet may lull our intellects into drowsy numbness
and induce uncritical acceptance of his alluring composition. Perhaps
these are all sources of truth. Perhaps there are others. But the ra-
tional person who has grasped the lesson of non-Fuclidean geometry
is at least wary of snares, and, if he accepts any truths, he does so
tentatively, expecting at any moment to be disillusioned. Paradox-
ically, although the new geometries impugned man’s ability to attain
truths, they provide the best example of the power of the human
mind, for the mind had to defy and overcome habit, intuition, and
sense perceptions to produce these geometries.

The loss of the sanctity of truth appears to dispose of an age-old
question concerning the nature of mathematics itself. Does mathe-
matics exist independently of man, as do the mountains and seas, or
is it entirely 2 human creation? In other words, is the mathematician
in his labors unearthing diamonds that have been hidden in the dark-
ness for centuries or is he manufacturing a synthetic stone? Even in
the latter part of the nineteenth century, with the story of non-
Euclidean geometry before him, the illustrious physicist, Heinrich
Hertz, could say, ‘One cannot escape the feeling that these mathe-
matical formulas have an independent existence and an intelligence
of their own, that they are wiser than we are, wiser even than their
discoverers, that we get more out of them than was originally put
into them.” Despite this opinion, mathematics does appear to be the
product of human, fallible minds rather than the everlasting sub-
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stance of a world independent of man. It is not a structure of steel
resting on the bedrock of objective reality but gossamer floating with
other speculations in the partially explored regions of the human
mind.

If the creation of non-Euclidean geometry rudely thrust mathe-
matics off the pedestal of truth it also set it free to roam. The work
of Lobatchevsky, Riemann, and Bolyai, in effect, gave mathemati-
cians carte blanche to wander wherever they wanted. Because the
non-Euclidean geometries, which were investigated originally for the
sake of what seemed to be an interesting logical nicety, proved to
have incomparable importance, it now seems clear that mathemati-
cians should explore the possibilities in any question and in any set
of axioms as long as the investigation is of some interest; application
to the physical world, a leading motive for mathematical investi-
gation, might still follow. At this stage in its history mathematics
scrubbed the clay of earth from its feet and separated itself from
science, just as science had broken from philosophy, philosophy from
religion, and religion from animism and magic. it is possible now
to say with Georg Cantor that ‘The essence of mathematics is its
freedom.’

The position of the mathematician before 1830 can be compared
with that of an artist whose driving force is the sheer love of his art
but who is compelled by the dictates of necessity to confine himself
to drawing magazine covers. Freed from such a restriction the artist
might give unlimited rein to his imagination and activities and pro-
duce memorable works. Non-Euclidean geometry had just this liber-
ating effect. The tremendous expansion in mathematical activities
as well as the increasing emphasis on aesthetic quality in the work
of mathematicians since the middle of the last century bears witness
to the influence of the new geometry.

Non-Euclidean geometry with its unparalleled importance in the
history of thought was the culmination of two thousand years of
dabbling in ‘useless,” logical questions. Mathematics thus provided
one more example of the wisdom of abstract, logical thinking un-
motivated by utilitarian considerations, and one more example of
the wisdom of occasionally rejecting the evidence of the senses, as
Copernicus asked us to do in his heliocentric theory, for the sake
of what the mind might produce.
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The Theory of Relativity

Mad Mathesis alone was unconfined,

Too mad for mere material chains to bind,
Now to pure space lifts her ecstatic stare,
Now, running round the circle, finds it square.

ALEXANDER POPE

There is an old bit of advice which says: Watch your friends; your
enemies will take care of themselves. In the scientific métier, this
saying goes: Suspect the obvious; the obscure truths will elude you
anyway. Anyone who would challenge the obvious must nevertheless
be daring, for the challenge is almost always regarded as an act of
madness. Such daring is often displayed by genius, and perhaps for
this reason genius does appear to be akin to madness as the popular
phrase would have it.

The daring of genius is not pointless bravado, however. It has a
goal which in the mathematical and scientific realms is a logically
consistent account of the phenomenon under investigation. The pas-
sion for such an account is the earmark of the scientist; the ability
to discern and the courage to follow the path of reason are the tests
of his genius.

In modern times, one man, the creator of the theory of relativity,
pre-eminently displayed such signs of greatness. With brilliance ex-
ceeded only by his modesty Albert Einstein attacked the obvious
and revolutionized almost all branches of scientific and philosophic
thought. The attack was directed against long accepted and, seem-
ingly, the soundest concepts and assumptions of physical science.

Among the assumptions, one of the most firmly held was that space
and figures in space obey the theorems of Euclidean geometry. It was.
of course, true that at the time Einstein made his attack the non-
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Fuclidean geometries had been in existence for about seventy-five
years. It was also recognized that there was no guarantee as to the
Euclidean character of physical space. Nevertheless, no one doubted
but what the geometry for scientific work had to be Euclid’s. The
belief that physical space is Euclidean carries with it the belief that
space is homogeneous, that is, that space on and near the Earth and
in the region of the most distant stars possesses the same geometrical
properties.

Nineteenth-century physics also rested upon certain metaphysical
assumptions introduced by Newton and blithely adopted by later
scientists. To appreciate the nature and role of these assumptions let
us examine the most fundamental of physical processes, the measure-
ment of length. Suppose a passenger walks from one position to an-
other along the deck of a moving ship. What is the distance from his
initial to his final position? The question is easily answered. The
passenger can determine the distance by laying down a yardstick.
Suppose now that this person’s motion is in the direction in which
the ship moves and that an observer on a ship anchored near by also
measures the distance between the man’s initial and final positions.
He will find the distance to be greater than that obtained by the
passenger himself because the moving ship has carried the passenger
some distance.

Of course, no insurmountable difficulty is involved. The passenger
measured a distance relative to the ship. The observer on the station-
ary ship measured the distance relative to the sea. If either one takes
into account the motion of the moving ship, a correction can be
made and the two observers will agree. Yet it must be recognized
that the measurement of the distance varied from one person to the
other. To speak of the distance from an initial to a final position is
meaningless unless we specify who has measured that distance.

Now the most important scientific laws involve distances either
directly or indirectly as in the determination of velocities, accelera-
tions, and forces. Hence, scientific laws should apparently depend on
the observer whose measurements are used in the framing of that law.
But this was not the usual understanding of a scientific law. Newton
believed that our senses assure us of the existence of absolute space
and absolute time and, therefore, he assumed that there are absolute
laws even though we must be content with a formulation of these
laws that depends on an observer on the moving ship called Earth.
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The absolute laws are known, he believed, to a superhuman observer,
God, whose observations of space and time are absolute. And the
ideal formulation of the mathematical and scientific laws of this uni-
verse are the laws God can obtain by his absolute measurements. It
was only by knowing the motion of the Earth relative to the fixed
observer, God, that man could translate his laws into the true form.
We see, then, that Newtonian scientific thought rested ultimately cn
metaphysical assumptions involving God, absolute space, absolute
time, and absolute laws.

One of the most firmly imbedded assumptions in the scientific
thinking of the late nineteenth century was that a force of gravity
exists. According to Newton's first law of motion a body at rest re-
mains at rest and a body in motion continues in uniform motion
along a straight line unless acted upon by a force. Hence, were there
no force of gravity, a ball held in the hand and merely released would
remain suspended in the air. Similarly, were there no force of grav-
ity, the planets would shoot out into space along straight-line paths.
Such strange phenomena do not occur. The universe acts as if there
were a force of gravity.

Though Newton did show that the same quantitative law covered
all the terrestrial and celestial effects of gravity’s action, the physical
nature of the force of gravity has never been understood. How does
the sun, 93,000,000 miles away from the Earth, exert its pull on the
Earth, and how does the Earth exert its pull on the variety of objects
near its surface? Though there were no answers to these questions
the physicists were not perturbed. Gravity was such a useful concept
that they were content to ignore numerous objections to it. Indeed,
if it were not for other more pressing questions and difficulties which
arose around 1880, the complacency of physicists on the subject of
gravity might not yet have been seriously ruffled.

Another problem raised by the introduction of the force of gravity
had also been quietly thrust aside. In Chapter x1v we pointed out
that every physical object possesses two apparently distinct proper-
ties, mass and weight. Mass is the resistance an object offers to a
change in its speed or direction of motion. Weight is the force with
which the Earth attracts an object. The mass of an object is constant,
whereas its weight depends on how far the object is from the center
of the Farth. Though these two properties of matter are distinct, the
ratio of weight to mass of all objects is always the same at a given
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place. This fact is as surprising as if the ratio of coal production to
wheat production were exactly the same each year. Were coal and
wheat production actually related in this way we should look for an
explanation in the economic structure of the nation. In like manner,
an explanation of the constant ratio of weight to mass was called for.
Until Einstein’s day none had been found.

One more physical assumption must be mentioned before we ex-
amine Einstein’s work. Attempts to explain the nature of light datc
back to Greek times. Since the seventeenth century the most com-
monly accepted view of light regarded it as a wave motion much as
sound is. Since it is not possible to conceive of a wave motion with-
out a medium to carry the wave, scientists reasoned that there must
be a medium which carries light waves. But the space through which
light travels from the distant stars is a vacuum and hence contains
no material substance to transmit the waves. Therefore, scientists had
to assume the existence of a new ‘substance,” ether, which could
neither be seen, tasted, smelled, weighed, nor touched. Moreover,
for reasons unimportant to us, ether had to be a fixed medium co-
existent with all space through which the Earth and other heavenly
bodies moved. The introduction of ether to carry light waves drugged
the scientists into a profound sleep which lasted over two hundred
years. But by 1880 the properties that had to be assigned to ether
were so contradictory that physicists began to doubt its existence
altogether.

Despite the many dubious and poorly understood assumptions that
lay at the foundations of late nineteenth-century physics, no group
of scientists in any age was ever more cocksure that it had discovered
the laws of the universe. The eighteenth century had been optimis-
tic; the nineteenth was supremely confident. Two hundred years of
partial success had so turned the heads of the scientists and philos-
ophers that Newton's laws of motion and the law of gravitational
attraction were declared to be immediate consequences of the laws
of thought and pure reason. The word assumption did not appear
in scientific literature despite the fact that, as Newton had expressly
stated, the concepts of gravitation and ether were hypotheses, and,
indeed, hypotheses not at all understood physically. But what was
inconceivable to Newton was, to the nineteenth century, inconceiv-
able otherwise.
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The drastic overhauling of physics began inauspiciously enough
when two American physicists decided in 1881 to check experimen-
tally the conclusion that the Earth moves through a stationary ether.
These two men, A. A. Michelson and E. W. Morley, devised an ex-
periment based on a very simple principle.

A little arithmetic shows that it takes longer to row a given distance
down a river and then back if there is a current than if there is no
current. ¥or example, if a man can row at the rate of 4 miles per
hour in still water then, with no current present, he can go 12 miles
down and then 12 miles back in 6 hours. If a current flows at the
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Figure 87. The Michelson-Morley experiment

rate of 2 miles per hour, however, the man’s progress downstream
will be at the rate of 4 + 2 miles per hour while his rate upstream
will be 4 — 2 miles per hour. At these rates his total time for the
trip will be 2 4+ 6 or 8 hours. The principle involved here is that
if a constant velocity, such as the velocity of the stream, hinders a
motion for a longer time than it helps the motion (6 hours as against
2 hours in the example), the net result is a loss in time.

Michelson and Morley used this principle in the following way.
From a point 4 (fig. 87) on the Earth a ray of light was sent to a
mirror placed on the Earth at B; the direction from 4 to B was the
direction of the Earth’s motion around the sun. The ray was expected
to travel through the ether to B at the usual velocity with which light
travels and then be reflected back to 4. Because of the Earth’s mo-
tion, however, the mirror at B moves to a new position B’ while the
light ray is traveling toward it. Hence the Earth’s motion delays the
light ray in reaching the mirror. At B’ the ray is reflected back toward
A. While the ray is traveling toward B, however, the Earth carries
4 to 4’, and while the ray is traveling back, the Earth carries 4’ to
A”. Therefore, the motion of the Earth helps the light ray in going
from B’ to A”. But the distance traveled from B’ to 4" is shorter than
the distance from A to B’. In this way, the light ray is helped by the
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Earth’s motion for a shorter time than it is delayed on the way out.
In this situation the Earth’s motion has the same effect as the velocity
of the stream does in the example above. Hence, by the principle
described in the preceding paragraph, the light ray should require
more time to do the journey from 4 to B’ to A” than if it had trav-
eled twice the distance AB with the Farth stationary in the ether.
But despite the use of a very ingenious and delicate testing device
known as an interferometer Michelson and Morley were unable to
detect the increase in time. The motion of the Earth through the
ether was apparently not taking place.

Physicists were faced with an inescapable dilemma. The ether that
was needed to carry light had to be a fixed medium through which
the Earth moved. Yet this condition was inconsistent with the result
of experimentation. The failure of theory to agree with such a fun-
damental experiment could not be ignored. By this time physicists
were convinced that their science needed some overhauling.

Though they were already sorely beset by fundamental problems,
Einstein came along in 1gos to call attention to further difficulties
in the basic concepts of simultaneity, length, and time. Einstein
pointed out that under some circumstances it is theoretically impos-
sible for two observers to agree on whether two phenomena or events
are simultaneous and because of this the observers will not agree on
the distance and time between events. Let us see why these disagree-
ments must occur.

Suppose that a man in the middle of a long, very fast-moving train
sees simultaneously two flashes of light, one of which emanates from
a spot in the front car of the train and the other from the car at the
rear. An observer standing alongside the track halfway between the
front and rear of the train also sees the two flashes but not simul-
taneously. The one from the rear reaches him first. The question for
consideration is: were the flashes emitted simultaneously?

Both observers would agree that they were not. As for the man on
the ground, since he is exactly between the flashes, the two light rays
must travel the same distance and, therefore, take the same amount
of time to reach him. Since he saw the flash from the rear first, this
flash must have occurred first. The man on the train would reason
that relative to him the velocity of the light ray coming from the rear
is the velocity of light minus the velocity of the train. On the other
hand, relative to him the velocity of the ray from the front is the
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velocity of light plus the velocity of the train. Since both rays trav-
eled half the train’s length to reach him, and since the ray from the
rear required more time, the flash from the rear must have been sent
out first in order for the two to reach him simultaneously. There
seems to be no difficulty whatever in this situation.

The two observers agreed on the order of the flashes because they
both assumed that the man on the ground was at rest with respect
to the ether while the man on the train was supposed to be in motion.
Suppose, however, that the man on the train should take the unor-
thodox view that the train is at rest with respect to the ether and
that the Earth is moving toward the rear of the train. According to
this view the man on the train would correctly conclude that the
flashes were emitted simultaneously. The man on the ground would
undoubtedly prefer to stand by his previous position, namely, that
he and the Earth are at rest with respect to the ether and that the
flash from the rear car occurred first. We now have disagreement on
the simultaneity of the two flashes arising out of disagreement about
who is at rest with respect to the ether. Who is?

Unfortunately, the man on the train is as much entitled to the
belief that the train is at rest with respect to the ether as the man
on the ground is that the Earth is stationary in ether, for the Michel-
son-Morley experiment shows us that we cannot detect any motion
through the ether. It follows that two observers moving relative to
each other must disagree on the simultaneity of two events.

If two observers disagree about the simultaneity of two events,
they must also disagree on the measure of distances. Suppose an ob-
server on Mars and one on the Earth agree to measure the distance
from the Earth to the sun. Since this distance is variable they must
agree to measure it at a given instant. But for both observers to agree
on the given instant, both must agree on the simultaneity of occur-
rences, such as the striking of clocks, which mark the instant. And
since two observers moving relative to each other will not agree on
the simultaneity of these occurrences, they will obtain different meas-
ures of the distance from the Earth to the sun ‘at a given instant.”

Two observers moving with respect to each other will disagree not
only on the measure of distances but also on the measure of time
intervals. Otherwise, the observers would have to agree on the simul-
taneity of events that mark the beginning of the interval as well as
on those marking the end. And this they cannot do.
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The assumptions that space is Euclidean everywhere, that absolute
lengths, absolute time, and absolute laws exist, that the force of grav-
ity operates throughout the universe, that a fixed ether exists and
carries light, as well as the problems these assumptions brought in
their train, were in themselves becoming too numerous and weighty
for science to carry with ease. When, in addition, it was recognized
that simultaneity, time intervals, and lengths did not have a unique
meaning, it also became apparent that no mere patchwork would
resolve all the difficulties. A revolution in physical theory loomed,
just as a political revolution does when the economic and social
structure of a country fails to provide for the basic needs of its people.

In 1905, at the age of twenty-five, Einstein inaugurated the whole
series of sweeping changes that were needed to re-establish physical
theory. The Michelson-Morley experiment showed that the motion
of the Earth does not affect the velocity of light relative to the Earth.
Since science cannot run counter to experimental fact, Einstein ac-
cepted the basic assumption that the velocity of light is the same for
all observers in the universe regardless of how they may be moving
relative to each other. Hence, in one respect physical theory and
experiment were made to agree. He accepted another axiom sug-
gested by experience, namely, that no physical body has a velocity
which exceeds that of light.

The concepts of absolute space and absolute time, which Newton
needed to frame the true laws of the universe, Einstein discarded.
Accepting the fact that two observers moving relative to each other
will disagree on the measurements of space and time, he introduced
the notions of local length and local time. Two observers who are at
rest relative to each other will agree on the distance and time be-
tween two events. This distance and time are the local distance and
local time for these observers. Two observers who are in motion
relative to one another will obtain different measurements of the dis-
tance and time between the same two events. Each one’s measure-
ments are his local length and local time. In other words, men live
in different space and time worlds.

If, for example, a Martian were to measure the distance and time
intervals between two events on the Earth, he would find these quan-
tities to be different from what our measurements would indicate.
We in turn would find lengths on Mars and time intervals between
events on Mars different from those the Martians would obtain.
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It should be emphasized that we are not speaking of the effect of
distance on sight or of optical illusions when we discuss the differ-
ences that different observers might obtain in the measurement of
lengths. Even if Mars were to pass right by us as we measure lengths
on it we should still find these lengths to be different from those
measured by the Martians. Nor are we speaking of a psychological
or emotional effect when we speak of disagreement on time intervals.
The theory of local time says that two observers moving relative to
each other and having identical clocks will record time intervals dif-
ferently because these observers live in different time worlds.

To consider a numerical example, an observer on the Earth would
find that a rocket ship moving at the speed of 161,000 miles per sec-
ond relative to the Earth is half as large as a man on the ship would
find it to be. Also, a clock on such a rocket would ‘move half as fast’
for the earth-bound observer as it would for the man in the rocket.
An observer in the rocket would draw the same conclusions on size
and time for objects and events on the Earth. And both sets of meas-
urements are correct, each in its own space and time world.

We have in this doctrine of local length and local time one of the
startlingly new assertions of the theory of relativity. The length of
a room and the duration of our work day are not fixed quantities.
They are one thing for us but different for an observer moving rela-
tive to us. The strangeness of these ideas should not blind us to the
fact that they agree far more with experiment and the reasoning on
simultaneity, which we examined above, than do the absolute no-
tions of Newton. Indeed, if they did not, scientists would not hold
them for a moment, relative or absolute.

In view of his abandonment of absolute space and absolute time,
Linstein had to adopt a new concept of what constitutes a mathemat-
ical law of the universe. His conclusion was that there are no abso-
lute laws in the sense of laws independent of observers. A law must
be framed in terms of the measurements of a particular observer.
If one observer formulates a law in terms of his measurements of
space and time, then it is still possible to translate this law into the
form given to it by another observer by means of formulas relating
the length and time measurements of the two observers and involv-
ing their relative velocity. But in any event laws are tied to observers.

Though Linstein discarded absolute space, absolute time, and ab-
solute laws, the question did arise whether any guantity connected
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with space and time measurements is the same for all observers. One
very important quantity of this sort was discovered. Before we discuss
it we must recall some notation from an earlier chapter. To repre-
sent points on the two-dimensional plane two co-ordinates, x and vy,
are used; to represent points in three-dimensional space three co-
ordinates, x, y, and z, are used. To represent space and time measure-
ments connected with events it is customary to use four letters, x, ¥y,
2, and ¢; the first three specify location in space and the fourth repre-
sents time. When discussing two different points or events, it is cus-
tomary to use subscripts; thus x1, y1, 1, ¢ represent the first event
and Xz, Y2, 2, £, the second one.

Now let us call upon a theorem of co-ordinate geometry. The dis-
tance between two points in a plane, one of whose co-ordinates is
(%1, 1) and the other (xs, ys), is given by the expression

(1) V(= %2)* + (1 — y2).

The distance between two points in space, (X1, y1, z1) and (Xa, Y2, 22),
is given by

(2) V(% — x2)* + (y1 — 92)° + (21 — 29)%

Concerning two events, (X1, y1, Z1, t1) and (X, y2, zs, t2), Einstein
found that the quantity

(8) V{x1— x2)2 + (y1 — y2)2 + (&1 — 22)% — 186,000(t; — £2)%,

wherein it is assumed that distances are measured in miles and time
in seconds, is the same for all observers. This absolute quantity is
called the space-time interval between two events. It is obviously the
analogue in the four-dimensional world of events of the quantities
given by (1) and (2) above. The figure 186,000 is the velocity of light
in miles per second.

Apparently, in order to find an absolute quantity, a quantity which
is the same for all observers, an expression must be formed that in-
volves both distance and time. And in this expression time measure-
ments are treated no differently than spatial measurements. Now
space and time had always been considered as different in kind and
to treat time values like space measurements, as formula (3) does,
seems to be an artifice designed specifically to produce an absolute
quantity. Yet in 1go8 H. Minkowski, a Russian mathematician, ar-
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gued otherwise. It is true, he agreed, that we have harbored a notion
of continuously flowing time which is independent of any notion of
space. None the less, when we observe events in nature we experience
time and space simultaneously. Moreover, time, itself, has always
been measured by spatial means, for example, in terms of the dis-
tance moved by the hands of a clock, by the motion of a pendulum
through space, or by the distance a shadow travels on a sundial. And
our methods of measuring space necessarily involve time. Even dur-
ing the simplest method of measuring distance, that of applying a
rod, time elapses. No measurement is instantaneous. Hence the nat-
ural view of events should be in terms of a combination of space and
time; that is, according to Minkowski, the world is a four-dimensional
space-time continuum.

True, different observers may obtain different measures of the
space and time components of the space-time interval between two
events. But this is not surprising. Consider three-dimensional space
itself. Two people in different parts of the globe see the same three-
dimensional space but one analyzes his experience of space into ver-
tical and horizontal directions different from the vertical and hori-
zontal directions of the other. Nevertheless, we continue to regard
space as a three-dimensional whole rather than as an artificial com-
bination of horizontal and vertical extents. Similarly, different ob-
servers may decompose space-time into different space and time com-
ponents. This decomposition is as real and as necessary for the person
who makes it as the distinction between horizontal and vertical is for
a person walking down a flight of stairs. Yet it is man who does the
differentiating; nature presents space and time together.

Einstein proceeded to utilize Minkowski’s view that the universe
should be regarded as a four-dimensional space-time world. The
astounding innovations of Kinstein’s Special Theory of Relativity
had not settled all of the difficulties enumerated at the beginning of
this chapter. No explanation was as yet forthcoming in regard to just
how gravity pulls objects to the Farth and ‘holds’ a planet in its
course, or why mass and weight should always have a constant ratio
at a given locale. Meanwhile, refinements in modern astronomical
instruments began to put Newton to the test. These instruments were
able to discover differences between the actual positions of the planet
Mercury and the positions as predicted by the law of gravity. Con-
sideration of these problems led Finstein to create and publish his
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General Theory of Relativity. The new theory retained the major
ideas of the earlier one but by extending them accomplished much
more.

The idea that space and time should be regarded as a four-dimen-
sional unity is employed in his general theory in the following way.
Farlier we stated that formula (3) is to be regarded as an interval of
space-time in a four-dimensional world. It is a generalization of for-
mulas (1) and (2) which give the distances between two positions in
a two-dimensional and a three-dimensional world, respectively. Now
formulas (1) and (2) were derived on the basis of Euclid’s geometry
and are merely algebraic ways of expressing distance. Since formula
(3) 1s essentially a generalization of (1) and (2), the space-time of Ein-
stein’s earlier theory is also Euclidean. (For our statement to be exact
the minus sign in (3) should be a plus sign but this is a detail.)

Suppose, however, that we were to use instead of (3) an expression
such as

(4) V 2(x1 — %x2)* + §(y1 — y2)? + (21 — 23)? — 100,000(t; — 2).

If formula (4) were taken to be the numerical value of the space-time
interval between the same two events whose co-ordinates (%1, Y1, 21, £1)
and (X2, Y2, Z, t2) are involved in (), then the value of the interval
between these events would, of course, be different from that given
by (3). In two and three dimensions the analogous procedure would
amount to taking a number for the distance between two points
different from that given by the formulas (1) and (2) of Euclidean
geometry. What is the significance of altering the value of the dis-
tance or the space-time interval?

The choice of a formula for distance determines whether we have
a Euclidean or non-Euclidean world. Let us see why this 1s so. Sup-
pose we were to use the three-dimensional Cartesian co-ordinates
discussed in Chapter xit to describe the positions of mathematical
points corresponding to New York and Chicago. By using formula
(2) to calculate the distance from New York to Chicago we should
obtain what the formula is supposed to give, namely, the length of
the straight-line segment joining the two cities. We could also use
a different formula, for example, the one that gives the length of
that arc of the great circle on the surface of the Earth between New
York and Chicago.
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Now suppose three cities, New York, Chicago, and Richmond, are
brought into our discussion. These three cities are the vertices of a
triangle. If we were to use formula (2) to calculate the sides of this
:riangle, we should obtain lengths that belong to a triangle formed
by straight-line segments. On the other hand, if we were to use the
formula for the great-circle arc length between each pair of vertices,
we should obtain lengths that belong to a triangle formed by arcs
of great circles on the surface of the sphere. That is, the choice of the
formula for distance would determine whether we must think of our
triangle as a plane triangle or as a triangle on a sphere. The prop-
erties of the two triangles differ, one being a triangle of Euclidean
geometry, the other, a triangle in Riemann’s non-Euclidean geom-
etry. Thus the choice of the formula for distance determines the
geometry that is used to describe the physical world.

Similarly, by adopting a formula such as (4) instead of (g) for the
interval between two events in space-time we cause the geometrical
figures in that four-dimensional mathematical world to possess prop-
erties different from those possessed by figures in Euclidean geom-
etry; that is, we establish a non-Euclidean geometry in that space-
time. We do not say that the new geometry will be the Lobatchev-
skian or Riemannian geometry examined in the preceding chapter
but it will be non-Euclidean in the sense that it will differ from
Euclid’s.

The choice of a distance formula determines not only the geom-
etry but also the shape of the geodesic, that is, the curve that gives
the shortest distance between two points. In Fuclidean geometry the
geodesic is the straight-line segment; in Riemann’s geometry it is
the arc of a great circle; in Lobatchevsky’s and Bolyai’s geometry it
is the type of curve shown in figure 81 of Chapter xxvi. We have
now to see how Linstein capitalized upon the choice of a ‘distance’
formula.

We should notice first that the location of a planet can be specified
by using four co-ordinates, three for its position in space and the
fourth for the time at which it occupies that position. The successive
locations lie on a curve in a four-dimensional mathematical world.
Finstein’s brilliant thought was to choose a formula for the space-
time interval such that the ‘path’ of each planet is a geodesic in the
resulting geometry.
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What is accomplished by this ingenious mathematics? It will be
recalled that the concept of a force of gravity was introduced to ac-
count for the fact that the planets move in ellipses instead of along
the straight lines that Newton’s first law of motion says they should
follow. 1f now we revise Newton’s first law of motion to read that
bodies undisturbed by forces travel along the geodesics of Einstein’s
space-time, we have in just this revised first law the description of the
motion of the planets around the sun without having to introduce a
fictitious force of gravity.

But the force of gravity had also been used to account for the
Earth’s attraction of objects near it. Moreover, an apple dropping
from a tree does not take the same path as do the planets. How does
Einstein treat this phenomenon of gravitation? Here, too, he utilized
the geodesics of space-time to eliminate the fictitious force. In his
choice of a formula for the space-time interval he replaced the num-
bers 2, 3, 4, and -- 100,000 in (4) by functions whose values vary from
place to place in space-time in accordance with the mass present.
Since the mass of the Earth differs from the mass of the sun, the
structure of the geometric ‘field’ around the Earth differs from that
near the sun. Consequently, the shapes of the geodesics vary from
‘place’ to ‘place’ in space-time. That is, by choosing the proper func-
tions in his formula for the space-time interval, Einstein fashioned
his space-time-so that the presence of a mass in the physical world
determined the character of that space-time and the geodesics around
that mass, much as differences in the shapes of mountains in a range
determine different geodesics on the surface of the Earth. In partic
ular, objects near the surface of the Earth merely follow the geodesics
of space-time in this region and again no force of gravity is needed to
account for the paths.

The explanation of what were formerly considered gravitational
effects in terms of the geometry of space-time disposes of another un-
solved problem, namely, why the ratio of weight to mass is constant
for all bodies on and near the Earth. Interpreted in the physical sense,
this constant ratio is the acceleration with which all masses fall to
the Earth * and which, according to Newtonian mechanics, is caused
by the force of the Earth’s gravitational pull on the masses. Hence
the constant ratio of weight to mass means that all masses follow the
same space and time behavior in falling toward the Earth. Now in

* See Chapter xiv.
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accordance with Einstein’s reformulation of the phenomenon of grav-
itation, what was formerly regarded as the Earth’s gravitational pull
now becomes the effect of the shape of space-time near the Earth. All
masses falling freely must, according to the revised first law of mo-
tion, follow the geodesics of space-time. In other words, all masses
should show the same space and time behavior near the Earth, and
they do. Hence, the theory of relativity solves the problem of the
constant ratio of weight to mass by eliminating weight as a scientific
concept and by advancing an even more satisfactory explanation of
the effects formerly attributed to weight.

As a climax to these accomplishments, the theory of relativity dis-
poses of two other unsolved problems which had baffled scientists.
The first of these concerns the motion of the planet Mercury. This
planet does not pursue a purely elliptical path about the sun. Actu-
ally, the perihelion—that is, the point on the ellipse at which Mer-
cury is closest to the sun—advances from one revolution to another.
About a hundred years ago, the French astronomer Leverrier showed
that part of this motion of the perihelion is due to the gravitational
attraction of the other planets. A complete explanation eluded the
scientists until the theory of relativity was created. The ‘path’ com-
puted for Mercury in the space-time of the new theory agrees, within
experimental error, with the observed motion. In other words, we
attain more accurate computations of planetary motions by means
nf the new theory than with Newtonian theory.

The second of the problems that troubled scientists was the ob-
served bending of light rays as they passed the sun on their way from
the stars to the Earth. Such a bending might have been explained as
a gravitational pull of the sun on the rays were it not for the fact
*hat a light ray has no mass. If, in accordance with the revised first law
of motion, we merely suppose that the light rays are following geo-
desics of the space-time region around the sun, the bending of the
light rays is explained and the measured deviations from straight-
line paths are in accord with computations based on the new theory.

Many a person who surveys the strange principles introduced by
the theory of relativity and who finally realizes how complex its
mathematical world is may be tempted to exclaim, ‘Leave me alone
with my ether, my gravitation, and my simple, intuitive, sense-satis-
fying Newtonian world. Your distorted construction may hew some-
what closer to experiment and to precise reasoning but it is too fan-
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tastic an account to be taken seriously.” Unfortunately, the person
living today does not have this freedom of choice. Two predictions
of the theory of relativity are now indispensable to science.

The first prediction is the relativity of mass. A ball held in a per-
son’s hand has, of course, a definite mass. If the person throws the
ball up or out, then the new theory says that, as far as that person
is concerned, the mass of the ball increases with its speed. This in-
crease in mass of a moving body becomes considerable when the
speed reaches any significant fraction of the speed of light, which is
186,000 miles per second. Such speeds are now common for electrons
in hundreds of varieties of radio tubes and for electrons and other
subatomic ‘particles’ in many types of atom-smashers. The theory of
all these devices must take into account the relativistic increase in
mass.

The other prediction of the theory that can no longer be ignored
by any intelligent person of our century states that a given amount
of energy is physically equal to a definite amount of mass; the energy
in a light wave is essentially no different from that in a piece of wood.
The precise quantitative expression, namely, that the energy in a
given quantity of mass equals the mass times the square of the veloc-
ity of light (in suitable units), is now well known. In addition to
establishing this formula, Einstein suggested that physicists examine
the phenomenon of radioactivity to uncover a physical conversion
of mass to energy. His suggestion proved to be sound. A few years
ago man learned to control this conversion of matter into energy in
the form of electromagnetic waves and produced the atomic bomb.

In spite of the astonishing and dramatic verifications of the theory,
many people find its four-dimensional, non-Fuclidean universe to-
tally unpalatable. No one can visualize a four-dimensional, non-
Euclidean world. But anyone who insists on visualizing the concepts
with which science and mathematics now deal is still in the dark ages
of his intellectual development. Almost since the beginning of work
with numbers mathematicians have carried on algebraic reasoning
that is independent of sense experience. Today they consciously con-
struct and apply geometries that exist only in human brains and that
were never meant to be visualized. Of course all contact with sense
perception has not been abandoned. The conclusions about the phys-
ical world predicted by geometric and algebraic cogitations must be
in accord with observation and experimentation if the logical struc-
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ture is to be useful for science. But to insist that each step in a chain,
even of geometrical reasoning, be meaningful to the senses is to rob
mathematics and science of two thousand years of development.

Much more can be said in favor of the theory of relativity. In the
preceding chapter we saw that the natural geometry of the surface
of the Earth in a mountainous region, say the Rocky Mountain belt,
would be non-Euclidean. On the surface of such a region there are
no straight lines, no circles, and no other familiar paths. Moreover,
whatever curve does give the shortest distance between two partic-
ular points may not serve similarly between two other points. Hence,
the character of the geometry, which is determined by the nature of
the geodesics, varies from place to place. This is precisely what hap-
pens in Einstein’s general theory. Just as mountain masses cause the
geometry of the Rocky Mountain belt to vary from point to point,
so in relativistic space-time the character of the geometry and the
shapes of the geodesics are affected by the presence of masses such
as the Farth or sun.

We are asked in the new theory to accept the concepts of local
space and local time, a relativity of time and space hitherto unknown.
This much can certainly be said in defense of the conclusion that the
time worlds of observers moving relative to each other are different.
What might be called the subjective character of our experience of
time has long been recognized. Were we to judge duration by our
personal feelings on the subject there certainly would be marked dis-
agreement on how much time elapses during any given interval.
Hence only in regard to an artificial device, such as a clock, is the
variation in time from one observer to another surprising. We have
assumed that all observers using identical clocks would obtain the
same result, but now we must recognize that even such a standard-
izing device will not serve to make time independent of the observer.

One more thought should reconcile us to the radical suggestions
made by Einstein. Consider the incredulity that must have prevailed
when people were first told that the Earth is a round ball instead of
a flat surface resting on some unknown foundation. What mathemat-
ical explanation could satisfy them that objects on the other side of
the ball remain on the surface? Imagine their perplexity when they
learned, in addition, that the Earth and the other planets whirl at
tremendous speeds around the sun and rotate at the same time, con-
trary to the evidence of their senses. These assertions of Copernican
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theory, which are commonplace by now, must have been far more
shocking to people of the sixteenth century than the sophisticated
pronouncements of the theory of relativity are to us. Newton’s ex-
planation of why people remain on the Earth and the Earth in its
path—the mysterious force of gravity—was not very satisfactory. Ein-
stein, on the other hand, removes the need for this mysterious force
and for other assumptions without actually contradicting the evi-
dence of our senses.

Nor should we despair if Einstein’s ideas do come hard to us de-
spite all the arguments in their favor. It is not surprising that the
average man, who cannot afford to spend much time speculating
about the mysteries with which nature has surrounded us, has been
much amazed and bewildered by the new mathematical and scientific
ideas about space, time, matter, and gravitation. He may take con-
solation from the fact that his bewilderment is mild compared to
the severe shocks that philosophers, who spend their lives building
up sound thoughts on these subjects, have experienced.

We have often spoken of the close relationship between mathe-
matics and philosophy, and we find in the theory of relativity an
example par excellence of a mathematical creation which revolution-
ized modem philosophy.

The union of space and time and the influence of matter on space-
time proposed by the theory of relativity, ideas that would have
seemed outlandish to philosophers of the early 1goo’s, have now be-
come embodied in a philosophy of nature more and more widely
held. Nature presents herself to us as an organic whole with space,
time, and matter comnmingled. Man has in the past analyzed nature,
selected certain properties that he regarded as most important, for-
gotten they were abstract aspects of a whole, and then regarded them
thereafter as entirely distinct entities. He is now surprised to learn
that he must reunite these supposedly separate concepts to obtain a
consistent, satisfactory synthesis of knowledge.

Aristotle first formulated the philosophical doctrine that space,
time, and matter are distinct components of experience. This view
was subsequently adopted by scientists and used by Newton. We,
following him, have become so accustomed to thinking of space and
time as fundamental and distinct components of our physical world
and separate from matter that we no longer recognize this view of
nature as man-made and as only one of a number of possible views.
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Of course, the philosophers of the contemporary scene, among them
the late Alfred North Whitehead, do not argue that this analysis of
nature is useless. On the contrary, it has proved quite valuable and
even essential. But we should be aware that it is artificial, and we
should not mistake our analysis for nature itself any more than we
should mistake the organs observed by dissection of the human body
for the living body itself.

The theory of relativity upsets one of the fundamental philosoph-
ical assumptions of science, the relationship of cause and effect. Under
the usual conception of this relationship the cause of an effect must
certainly precede it. In accordance with the new theory, however,
the order of two events is no longer an absolute affair. When we dis-
cussed the question of simultaneity we found that the order of the
two flashes of light depended on the observer. If these two flashes
were replaced by events that appeared to be cause and effect to some
observers, there might, nevertheless, be other observers who could
not view the events in that relation, for to them the event called the
effect might occur before the cause. Revision of the concept is ob-
viously in order.

The existence of free will seems to stand or fall with cause and
effect. Free will implies that a voluntary act of the mind can cause
a subsequent act of the body. To the person exercising his ‘free will’
this may indeed be the order of events; but for some observers the
order of events may be reversed in time so that the act of the body
would appear to be making up the person’s mind. The latter view
may remind us of the modern theory of emotions which says, for ex-
ample, that we are afraid because we run away from danger rather
than that we run away because we are afraid. The question of whether
human beings possess free will must evidently be reconsidered in the
light of the theory of relativity.

The revolutionary doctrines of the new theory have focused atten-
tion on our tendency to accept patterns of thought just because we
grow up with them. Newton taught us to think in terms of a force
of gravity which reached out from the sun millions and hundreds of
millions of miles away and kept the planets in their orbits. This con-
cept was acclaimed in the eighteenth century because it permitted
accurate predictions. We have been following that lead unquestion-
ingly. Youngsters two or three generations in the future will no
doubt laugh at our naiveté and credulity.
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Another mental process to which the work on relativity calls atten-
tion and which is obstructive to progress is that of making assump-
tions unconsciously. We are guilty of glibly and uncritically assum-
ing, for example, that time, distance, and simultaneity are the same
for all people in this universe. Mathematicians and scientists now
realize that more attention must be paid to assumptions made im-
plicitly than to those that have been recognized and explicitly stated.

Perhaps the author is also guilty of an unwarranted assumption
at this point, the assumption that the reader has been able to swallow
and digest so rapidly not only the major ideas of the theory of rela-
tivity but its philosophical implications as well. Let us therefore
review the main events briefly: The physics of the nineteenth cen-
tury was built upon the foundation of Euclidean geometry, the ideas
of absolute lengths, absolute time, and absolute simultaneity of
events, Newton’s laws of motion, the force of gravity, and the con-
cept of ether. Each of these foundation stones involved assumptions
about the physical world believed to be well warranted. The Michel-
son-Morley experiment showed that an inconsistency in physical the-
ory was involved in the use of ether as the carrier of light waves.
Einstein then showed that the assumptions of absolute length, time,
and simultaneity were also unjustified. A revolution in physical
thought followed. The notions of local length, local time, and local
order of events replaced the absolutes. The search for new absolute
quantities ended with the realization that we must combine space
and time to produce them. Minkowski then made us appreciate that
the universe was naturally a four-dimensional, space-time unity, and
that it was unreal, even though sometimes necessary for practical
reasons, to separate space and time. Einstein followed up this idea
by developing a non-Euclidean geometry that explains the effects of
Newton’s force of gravity in terms of the natural paths of bodies in
the new space-time.

With these developments a broad trend in the history of mathe-
matics and science comes to a grand climax. We spoke in an earlier
chapter of the mathematization of science. A most significant step
in this direction was taken when scientists decided in the seventeenth
century to fashion their thoughts and procedures in terms of quan-
titative relationships. The phenomena of motion, forces, sound, light,
and electricity were all successfully studied and applied only after
this transmutation into mathematics was accomplished. Thereupon,
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many domains of science became merely extensions of the mathe-
matics of number.

It is now possible to appreciate how much of science has become
mathematized in the form of geometry. Since the days of Euclid the
laws of physical space have been no more than theorems of geometry.
Then Hipparchus, Ptolemy, Copernicus, and Kepler summarized the
motions of the heavenly bodies in geometrical terms. With his tele-
scope Galileo extended the application of geometry to infinite space
and to many millions of heavenly bodies. When Lobatchevsky, Bol-
yai, and Riemann showed us how to construct different geometrical
worlds, Einstein seized the idea in order to fit our physical world
into a four-dimensional, mathematical one. Thereby gravity, time,
and matter became, along with space, merely part of the structure
of geometry. The belief of the classical Greeks that reality can be
best understood in terms of geometrical properties and the Renais-
sance doctrine of Descartes that the phenomena of matter and motion
can be explained in terms of the geometry of space have received
sweeping affirmation.

The theory of relativity is but one of the twentieth-century devel-
opments in mathematics that are decisively shaping our civilization
and culture. T'o be fair to our century we should investigate a related
and perhaps even more influential development—quantum theory.
Whereas the theory of relativity has been most useful in the treat-
ment of phenomena involving great distances, times, and velocities,
quantum theory has enabled scientists to treat the minute world in-
side the atom. Hence, the science of the vast universe and the infini-
testimnal realms have both been revolutionized. Unfortunately, the
course of twentieth-century science is departing farther and farther
from ‘common sense,” from intuitively accessible concepts, and from
simple, physical pictures. More and more science is resorting to com-
plicated mathematics for which the physical account is either incom-
plete or even inconsistent despite the fact that this account is real
enough to design and produce atomic bombs. It is impossible, there-
fore, in a survey as brief as this one, to attemnpt any account of quan-
tum phenomena. We regret that we must merely mention in passing
this second major development of a century that is only half over.



XXV

Mathematics: Method and Art

The Science of Pure Mathematics, in its modern develop-
ments, may claim to be the most original creation of the

human spirit. ALFRED NORTH WHITEHEAD

In the preceding chapters we have examined some of the ideas of
mathematics proper, the origins of these ideas in their contemporary
setting, and their influences on branches of our culture. In modern
times these ideas have multiplied at an almost fantastic rate. Corre-
spondingly, the influences of mathematics have grown in number,
depth, and complexity. It would be possible to take any one of the
fields that enjoyed close contact with mathematics in some period
we have examined and trace the continuation and extension of that
association right down to the present day. There is neither space no:
time, however, to permit a comprehensive account of the relation
of mathematics to art, science, philosophy, logic, the social sciences,
religion, literature, and a dozen other major human activities and
interests. It is hoped that enough has been said to support the thesis
of this book, namely, that mathematics has played a predominant
role in the formation of modern culture.

One subject has, however, been thus far slighted. Mathematics is,
itself, a living, flourishing branch of our culture. Several thousand
years of development have produced an imposing body of thought
whose essential characteristics should be familiar to every educated
person. Though the nature of modern mathematics was somewhat
foreshadowed by the contributions of the Greeks, the events of the
intervening centuries and the creation of non-Euclidean geometry
in particular have radically altered the role and character of the
subject. An examination of the nature of twentieth-century mathe-
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matics will not only redress a wrong but will perhaps make it evident
why the subject has gained in power and stature.

More than anything else mathematics is a method. The method
is embodied in each of the branches of mathematics, such as the
algebra of real numbers, Euclidean geometry, or any non-Euclidean
geometry. By examining the common structure of these branches,
the salient features of this method will become clear.

Any one branch or system of mathematics deals with a class of
concepts pertinent to it; for example, Euclidean geometry deals with
points, lines, triangles, circles, and so on. Precise definitions of the
concepts belonging to a system are all-important foundation stones
on which the delicate superstructure is built. Unfortunately not every
concept or term can be defined without entering upon an unending
succession of definitions. It is true that the meanings of the undefined
terms are suggested by physical examples. Addition, one of the un-
defined terms of algebra, can be explained by talking in terms of the
number of cows that would be obtained by forming one herd from
two separate herds. But such explanations in physical terms are not
part of mathematics, for the subject is logically independent and self-
sufficient. Of course, some concepts can be defined by appealing to
the undefined ones, just as circle can be defined in terms of point,
plane, and distance by describing it as the set of all points in a plane
at a fixed distance from a given point.

If some terms are undefined and the physical pictures and proc-
esses we customarily associate with these terms are not part of math-
ematics proper, what facts about them can we use in the reasoning?
The answer is to be found in the axioms. These assertions about the
undefined and defined terms, which we accept without proof, are the
sole basis for any conclusions that may be drawn about the concepts
under discussion.

But how do we know what axioms to accept, especially in view of
the fact that they involve undefined terms? Are we not in the position
of dogs chasing their own tails? As in the case of the undefined terms,
experience usually supplies the answer. Men accepted the axioms
about number and the axioms of Fuclidean geometry because expe-
rience with collections of objects and with physical figures vouched
for these axioms. Here, too, we must caution against including the
physical experience as part of mathematics. Mathematics begins with
the statement of the axioms regardless of where they are obtained.
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Experience was the sole source of axioms until the nineteenth cen-
tury. The investigations in non-Euclidean geometry, however, were
motivated by a desire to use a parallel axiom different from Euclid’s.
In these cases mathematicians were deliberately going contrary to
experience.

Though the axioms of non-Euclidean geometry appeared to be
contrary to ordinary human experience they yielded theorems appli-
cable to the physical world. In view of this fact it would seem that
there should be considerable latitude in the choice of axioms. This
is a partial truth, for the axioms of any one branch of mathematics
must be consistent with each other, or else only confusion results.
Consistency means not only that the axioms must not contradict each
other but that they must not give rise to theorems which contradict
each other.

The requirement of consistency has begun to take on great signif-
icance in recent years. As long as mathematicians regarded their
axioms and theorems as absolute truths, it did not occur to them
that contradictions could ever arise, except through an error in logic.
Nature was consistent. Since mathematics phrased facts of nature in
its axioms and deduced other truths not immediately apprehended
in nature, mathematics also had to be consistent. The creation of
non-Fuclidean geometry, however, caused the mathematicians to see
that they must stand on their own feet. They were not recording
nature; they were interpreting. And any interpretation might not
only be wrong but might also be inconsistent. The problem of con-
sistency was further emphasized by the discovery of paradoxes in-
volving fundamental concepts, a discovery that followed in the train
of Cantor’s contributions.

It may be possible to determine by direct examination of a set of
axioms that no one of them contradicts another. But how can we
be sure that no one of the hundreds of theorems which may be de-
ducible from the axioms will ever contradict another? The answer
to this question is lengthy and, it must be confessed, not entirely
satisfactory at the present time. Much recent work in mathematics
has been directed toward establishing the consistency of the many
mathematical branches. Mathematicians, however, have been balked,
at least thus far, in their efforts to prove that the mathematical sys-
tem which comprises the axioms and theorems about our ordinary
real number system is consistent. The situation is extremely embar-
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rassing. In recent years consistency replaced truth as the god of math-
ematicians and now there is a likelihood that this god too may not
exist.

In addition to being consistent with each other, the axioms of a
branch of mathematics should be simple. The reason for this require-
ment is clear. Inasmuch as axioms are accepted without proof, we
should be aware of precisely what we are agreeing to. Simplicity in-
sures this understanding. It is preferable, though not essential, that
the axioms of a mathematical system be independent of each other.
That is, it should not be possible to deduce an axiom from one or
more of the others. The axiom that can be so deduced is better af-
firmed as a theorem, for we thereby reduce to as small a number as
possible the statements accepted without proof. Finally, the axioms
of a mathematical system must be fruitful; like carefully selected
seeds they must yield a valuable crop, for one objective of mathe-
matical activity is to obtain the new knowledge and insight implicit
in the axioms. Euclid’s contribution to mathematics was valuable
because he chose a simple set of axioms that yielded hundreds of
theorems.

Granted that a set of axioms fulfilling all the necessary and desir-
able conditions has been selected, how does the mathematician know
what theorems to prove and how does he go about proving them?
Let us consider these questions in turn.

There are many sources of possible theorems. Of such sources ex-
perience is by far the most fruitful. Experience with physical or real
triangles suggests many likely conclusions about mathematical tri-
angles. Deduction from the axioms then either establishes these con-
clusions as theorems of mathematics or discredits them. Of course
experience must be understood in a broad sense. Random observa-
tions sometimes suggest possible theorems. Scientific problems aris-
ing in laboratories or observatories and the artistic problem of de-
picting depth on a flat surface have led to precise theorems.

To a large extent mathematics generates its own problems. Many
a possible theorem arises as a generalization of observations about
numbers and geometrical figures. Anyone who has played with in-
tegers, for example, has doubtless observed that the sum of the first
two odd numbers, that is, 1 + §, is the square of two; the sum of the
first three odd numbers, that is, 1 4+ g 4 5, is the square of three;
and similarly for the first four, five, and six odd numbers. Thus simple
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calculation suggests a general statement, namely, that the sum of the
first n odd numbers, where » is any positive integer, is the square
of n. Of course this possible theorem is not proved by the calculations
above. Nor could it ever be proved by such calculations, for no mor-
tal man could make the infinite set of calculations that would be
required to establish the conclusion for every n. The calculations do,
however, give the mathematician something to work on.

Consider another instance of generalization as a source of sugges-
tions for theorems. A triangle is a polygon of three sides. Now in
Euclidean geometry the sum of the angles of a triangle is 180°. Is
it not natural to ask whether any general theorem could be found
about the sum of the angles of any polygon? This question is an-
swered by a very old theorem. The sum of the angles of any polygon
is found by subtracting two from the number of sides and then mul-
tiplying the result by 180°.

We have already scen how the purely logical problem of deducing
the assertion contained in Euclid’s parallel axiom from more accept-
able axioms led to non-Euclidean geometry. Once the idea of such
geometries was grasped numerous suggestions for theorems were ob-
tained by seeking the analogues of theorems that held in Euclidean
geometry. For example, what is the analogue of the theorem that the
sum of the angles of a quadrilateral is g60°?

These few indications of how the mathematician secures sugges-
tions for theorems do not tell the whole story. Even if we add the
more fortuitous sources such as pure chance, guesswork, and blun-
dering about until a theorem is found, we still have left out the most
valuable source of possible theorems~the imagination, intuition, and
insight of creative genius. Most people could look at a quadrilateral
indefinitely without becoming aware that if the midpoints of the
four sides are joined (fig. 88), the figure formed is a parallelogram.
Such knowledge is not the product of logic but of a sudden flash of
insight.

In the domains of algebra, calculus, and advanced analysis espe-
cially, the first-rate mathematician depends on the kind of inspiration
that we usually associate with the composer of music. The composer
feels that he has a theme, a phrase which, when properly developed
and embroidered, will produce beautiful music. Experience and a
knowledge of music aid him in developing it. Similarly the mathema-
tician divines that he has a conclusion which will follow from the



458 MATHEMATICS IN WESTERN CULTURE

axioms. Experience and knowledge may guide his thoughts into the
proper channels. Modifications of one sort or another may be re-
quired before a correct and satisfactory statement of the new theorem
is achieved. But essentially both mathematician and composer are
moved by a divine afflatus that enables them to ‘see’ and ‘know’ the
final edifice before one stone is laid.

Knowing what to prove is inextricably involved with knowing how
to prove it. The mathematician may be convinced from an examina-

B

Figure 88. The lines joining the midpoints of the sides of any quadrilateral form
a parallelogram

tion of the known facts in a situation that it should be possible to
prove a certain theorem. But until he can give a deductive proof of
this theorem he cannot assert or apply it. The distinction between
conviction that a theorem should hold and proof of the theorem is
made clear by many classic examples. The Greeks proposed the three
famous problems of doubling a cube, trisecting an angle, and squar-
ing a circle by means of a straightedge and compass. Over a period
of two thousand years many a mathematician was convinced that it
was impossible to perform these constructions under the conditions
stated, but it was not until definite proofs of the impossibility were
given in the nineteenth century that the problems were considered
settled.

An excellent example of a conjecture, the truth of which seems in-
dubitable, is that every even number is the sum of two prime num-
bers. A prime number, let it be remembered, is a whole number
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divisible only by itself and 1; thus 13 is a prime number but g is not.
In accordance with this conjecture 2 is 1 + 1; 4is 2 + 2; 6is g + 3;
8is g + 5; 101is 3 + #; and so on. We could continue to test even
numbers indefinitely and we should find that the conjecture holds.
This conjecture is not a theorem of mathematics, however, because
no proof of it has thus far been given.

A theorem must be established beyond question by deductive
reasoning from axioms, and mathematicians literally work thousands
of years to obtain such proofs. In our daily use of the phrases ‘math-
ematical exactness’ and ‘mathematical precision’ we pay homage to
this unrelenting search for certainty.

Evidently much mathematical work must be done to find methods
of proof even after the question of what to prove is disposed of. This
point needs no emphasis for those readers who have struggled with
exercises in geometry wherein the statement of what to prove is given
and the student is expected to take over from that point. In the
search for a method of proof, as in finding what to prove, the math-
ematician must use imagination, insight, and creative ability. He
must see possible lines of attack where others would not, and he must
have the mental stamina to wrestle with a problem until he has suc-
ceeded in finding a solution. Just what goes on in his mind while he
works on the problem we do not know, any more than we know
exactly what thought processes inspired Keats to write fine poetry
or why Rembrandt’s hands and brain were able to turn out paintings
that suggest great psychological depth. We cannot define genius. We
can only say that creative ability in mathematics calls for mental
qualities of unusual excellence.

Perhaps we have been riding our Pegasus too hard and too high.
Having anticipated a theorem and having then established it, has
the mathematician really learned something new? After all, he de-
rives from the axioms only what he puts into them, since all the con-
clusions that follow are logically implicit in the axioms. Mathema-
ticians adopt axioms and spend centuries deducing theorems that are
actually no more than elaborations of what the axioms say. In the
words of the philosopher, Wittgenstein, mathematics is just a grand
tautology.

But how grand! It is literally correct to describe the logical struc-
ture of mathematics as a tautology, but this statement is about as
adequate as saying that Venus de Milo is just a big girl. The descrip-
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tion of mathematics as a tautology says that the choice of a set of
axioms is like the purchase of a piece of mining land—the riches are
all there. This description omits, however, the patient, hard digging
which must be performed, the careful sifting of the precious metal
from the base rock, the value and beauty of the treasure obtained,
and the pleasure and exhilaration of accomplishment.

The divination and establishment of theorems complete the struc-
ture of a branch of mathematics. Such a branch, then, comprises
terms, undefined and defined, axioms, and theorems proved on the
basis of these axioms. This analysis of a mathematical system de-
scribes the structure of the mathematics of number and the structure
of each of the geometries. It thus seems to epitomize the nature of
mathematics. But a fuller appreciation of our subject calls for a little
deeper investigation.

Every mathematical system contains undefined terms: for example,
the words point and line in a geometrical system. In our discussion
of the non-Euclidean geometries we found that we can attach phys-
ical meanings to the word line that differ considerably from the
stretched string mathematicians had in mind in constructing these
geometries. The fact that we can take such liberties with undefined
terms, that we can give them seemingly unwarranted interpretations,
suggests some deeper significance in the existence of undefined terms
than has heretofore been made evident.

Let us forget mathematics for a moment and concern ourselves
with the less logical field of diplomacy. A statesman at an interna-
tional congress was faced with the delicate task of forming commit-
tees to perform various functions and decided that it would be tact-
ful to form these committees in accordance with the following con-
ditions:

{(a) Any two nations should appear on at least one committee.

(b) Any two nations should not appear on more than one committee.
(c) Any two committees should have at least one nation in common.
(d) Every committee should have at least three nations on it.

Though these conditions seemed wise to the statesman, he was
somewhat afraid that they might lead to undesirable complications
which he could not foresee. He consulted a mathematician who at
once pointed out some of the consequences.
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(1) Any particular combination of two nations will appear on one
and only one committee.

(2) Any two committees will have one and only one nation in com-
mon.

(3) There will be many combinations of three nations that will not
appear on any committee.

The mathematician was able to state these conclusions at once be-
cause he recognized that the conditions on nations and committees
were precisely like the following statements about points and lines:

(a’) Any two points appear on at least one line.

(b’) Any two points do not appear on more than one line.
{(¢’) Any two lines have at least one point in common.

(d) Every line contains at least three points.

The only difference between the two sets is that the words point
and line take the place of nation and committee. Then the very the-
orems the mathematician had once deduced about points and lines
from the conditions (a’) to (d’) carried over to nations and commit-
tees because only the facts (@) to (d’) had been used to establish the
theorems. The mathematician had but to replace point and line by
nation and committee in the mathematical theorems to obtain the
consequences he presented to the statesman. Thus the absence of
well-defined meanings for the undefined terms point and line proved
to be a great advantage.

A fact of great consequence should now be clear: In deductive
proof from explicitly stated axioms the meaning of the undefined
terms is irrelevant. The mathematician of today realizes that any
physical meaning can be attached to point, line, and other undefined
terms as long as the axioms involving these terms hold for the phys-
ical meanings. If the axioms do hold, then the theorems also apply
to these physical interpretations.

It would seem that our new conception of the nature of mathe-
matics robs it of all its meaning. Instead of being inseparably related
to definite physical concepts and giving us insights into the physical
world, it now appears to be concerned with empty words ‘signifying
nothing.” But the reverse is true. Mathematics is far richer in
meaning, vaster in scope, and more fruitful in application than had
ever been suspected before. In addition to the physical meanings
which were formerly associated with mathematical concepts and can



462 MATHEMATICS IN WESTERN CULTURE

still be retained, an unlimited variety of new meanings may be found
that satisfy the axioms of mathematical systems. In such new situa-
tions the theorems of these systems have new meanings and hence
new applications.

Yet pure mathematics itself is not immediately or primarily con-
cerned with the special meanings that may be given to the undefined
terms. Rather it is concerned with the deductions that can be made
from the axioms and the defined concepts. Applied mathematics, on
the other hand, is concerned with those physical meanings of the
concepts of pure mathematics that render the theorems useful in
scientific work. The transition from pure to applied mathematics
usually goes unnoticed. The statement that the area of a circle is
#r? is a theofem of pure mathematics. The statement that the area
of a circular field is « times the square of a certain physical length
is a theorem of applied mathematics.

The distinction we have drawn between pure and applied mathe-
matics is precisely what Bertrand Russell had in mind when he made
the seemingly flippant but entirely justified remark that pure ‘mathe-
matics is the subject in which we never know what we are talking
about, nor whether what we are saying is true.” Of course many a
person has entertained such thoughts about mathematics without en-
couragement from Russell. He may not have known, however, how
true they were or how to justify them. Mathematicians do not know
what they are talking about because pure mathematics is not con-
cerned with physical meaning. Mathematicians never know whether
what they are saying is true because, as pure mathematicians, they
make no effort to ascertain whether their theorems are true asser-
tions about the physical world. Of such theorems we may ask only
whether they were obtained by correct reasoning.

The abstract character of mathematical systems and their relation
to physical meanings may be illustrated by a comparable situation in
music. Beethoven composed the Fifth Symphony. Lesser mortals con-
tributed the interpretations. Hope, despair, victory, defeat, man’s
struggles against fate, all these themes are read into Beethoven’s cre-
ation. The music, like mathematics, exists without any such ‘appli-
cations,” however.

We might be inclined to believe that the process of deducing
conclusions from axioms about undefined terms is peculiar to pure
mathematics. But a moment’s digression will convince us that this
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type of reasoning is not at all unusual. Let us consider the typical
thought process of lawyers. The lawyer accepts as an axiom, although
he prefers to call it a principle or rule, the fact that every sovereignty
has police power. New York State is, according to the definition of
a state in our union, sovereign in local matters. Industries conducted
wholly within New York State are purely local matters. Hence New
York has police power over industries located wholly within the
state borders. The employment of elevator operators in buildings
in New York is, by legal definition, an industry conducted entirely
in New York. Hence New York State has police power over the
employment of elevator operators in buildings within the state and,
in particular, over the employment of women elevator operators.

By using some axioms about concepts or terms the lawyer has
arrived at a conclusion. Let us notice, however, that no definition
of police power was given or used in the reasoning. Our lawyer has
utilized only the axiom that every sovereignty has it. Hence the term
police power was used as an undefined term just as the mathema-
tician uses point and line. More than that, while assenting to the
reasoning above the reader inexperienced in the law may have as-
sociated police power with policemen. The usual legal interpreta-
tion of police power, however, is the power to provide for health
and general welfare. As a matter of legal history, police power did
not at one time include the fixing of minimum wages for women,
so that our reasoning would then have led to the conclusion that
New York State could not fix minimum wages for women elevator
operators. Later, however, a court decision declared that police
power did include the fixing of minimum wages for women. Hence,
by this interpretation of police power New York State can fix min-
imum wages for women who operate elevators in New York build-
ings. Thus the undefined term police power can be given completely
contradictory interpretations and yet the conclusion obtained by the
reasoning above applies under either interpretation.

We see from this example that the lawyer, like the mathematician,
engages in chains of deductive reasoning about undefined terms and
often gives concrete meaning to these terms only when he is ready
to apply his conclusions. Also, just as the mathematician gives vary-
ing, even contradictory, physical meanings in different situations to
an undefined word such as line, so the court gives contradictory
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meanings at different times to an undefined term such as police
power.

The analogy between mathematical and legal procedure extends
beyond the use of undefined terms in chains of deductive reasoning.
Principles of law are not merely axioms; they belong to systems as
do the axioms of mathematics, and different systems may contain
contradictory principles. For cxample, the legal right of the indi
vidual to engage in private enterprise is a principle in a capitalistic
system of government just as the Euclidcan parallel axiom is an
axiom in the Euclidean systemn of geometry. The differences among
fascist, democratic, and communistic forms of government stem from
differences in fundamental principles, just as the differing theorems
in the several geometries stem from different axioms. And just as
each geometry attempts to treat physical space, each political system
attempts to treat the social order.

Not only lawyers within legal systems but also politicians within
political parties use the mathematical scheme of things that we have
been describing. Before each election campaign the politicians dare
to be logical. The leading members of each party draw up a plat-
form, each plank of which is, in a real sense, an axiom of that party’s
political creed. From the statements of this platform it should be
possible to deduce a party’s position on future legislation. So far so
good. What the politicians fail to point out, much less stress, is the
free use in their platforms of undefined terms such as liberty, justice,
Americanism, democracy, and the like. Needless to say the use of
undefined terms in this connection is deliberate.

Our discussion of the significance of undefined terms in mathemat-
ical systems should help us appreciate the abstractness of mathe-
matical thinking. This abstractness results from the fact that mathe-
matics proper drops the physical meanings originally associated with
the undefined terms. Mathematical method is abstract in another
sense as well. Out of the medley of experiences proffered by nature,
mathematics isolates and concentrates on particular aspects. This is
abstraction in the sense of delimiting the phenomenon under inves-
tigation. For example, the mathematical straight line has only a few
properties compared to those of the straight lines made by the edge
of a table or drawn with pencil. The few properties the mathemat-
ical line possesses are stated in the axioms; for example, it is deter-
mined by two points. The physical lines, in addition to this property,
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have color and even breadth and depth; moreover, they are built up
of molecules each of which has a complicated structure.

It would seem ofthand that an attempt to study nature by concen-
trating on just a few properties of physical objects would fall far
short of effectiveness. Yet part of the secret of mathematical power
lies in the use of this type of abstraction. By this means we free our
minds from burdensome and irrelevant detail and are thereby able
to accomplish more than if we had to keep the whole physical pic-
ture before us. The success of the process of abstracting particular
aspects of nature rests on the divide-and-conquer rule.

In addition to delimiting the problem being studied there are
further advantages in concentrating on a few aspects of experience.
The experimental scientist, because he deals so directly with physical
objects, is usually limited to thinking in terms of objects perceived
through the senses. He is chained to the ground. Mathematics, by
abstracting concepts and properties from the physical objects, is able
to fly on wings of thought beyond the sensible world of sight, sound,
and touch. Thus mathematics can ‘handle’ such ‘things’ as bundles
of energy, which perhaps can never be qualitatively described be-
cause they are apparently beyond the realm of sensation. Mathemat-
ics can ‘explain’ gravitation, for example, as a property of a space
too vast to visualize. In like manner mathematics can treat and ‘know’
such mysterious phenomena as electricity, radio waves, and light for
which any physical picture is mainly speculative and always inade-
quate. The abstractions, that is the mathematical formulas, are the
most significant and the most useful facts we have about these phe-
nomena.

Abstracting quantitative aspects of physical phenomena often re-
veals unsuspected relationships becausc the quantitative laws turn
out to be the same for apparently unrelated phenomena. This state-
ment is nowhere better illustrated than by Maxwell’s discovery that
electromagnetic waves and light waves satisfy the same differential
equations. It suggested at once that light and electromagnetic waves
possess the same physical properties, a relationship confirmed a thou-
sand times since. As Whitehead says:

Nothing is more impressive than the fact that as mathematics with-
drew increasingly into the upper regions of ever greater extremes of
abstract thought, it returned back to earth with a corresponding growth
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of importance for the analysis of concrete fact. . . The paradox is now
fully established that the utmost abstractions are the true weapons with
which to control our thought of concrete fact.

Those who, admitting the paradox, still deplore the fact that to
achieve success the physical sciences have to pay the price of math-
ematical abstractness must reconsider what it is they would look for
in a scientific exposition of the nature of the physical world. Edding-
ton’s answer is that a knowledge of mathematical relations and struc-
ture is all that the science of physics can give us. And Jeans says that
the mathematical description of the universe is the ultimate reality.
The pictures and models we use to assist us in understanding are,
to him, a step away from reality. They are like ‘graven images of a
spirit.” We go beyond the mathematical formula at our own risk.

We have been discussing mathematics as a method, a method ap-
plied to the study of quantitative and spatial relationships and to
concepts arising from these original fields of investigation. The prov-
ince of mathematics is no longer clearly delimited, however. The
creation of non-Euclidean geometry, as we have seen, released the
mathematician from the bondage of producing truths and set him
free to adopt axioms and to investigate ideas that may have no ap-
parent usefulness in mastering or understanding the physical world.
And so the mathematician is compelled to ask himself what guides
his choice of subject matter and what motivates his activity. What
distinguishes his work from cheap riddles, crossword puzzles, or even
mere nonsense? (The reader who would like to answer this question
at once may be a bit too hasty.) For about a hundred years now
mathematicians have come to recognize what was felt and asserted
by the Greeks but had been lost sight of in the intervening centuries:
mathematics is an art and mathematical work must satisfy aesthetic
requirements.

No doubt many people feel that the inclusion of mathematics
among the arts is unwarranted. The strongest objection is that math-
ematics has no emotional import. Of course this argument discounts
the feelings of dislike and revulsion which mathematics induces in
some people. This argument also undervalues the delight experi-
enced by creators of mathematics when they succeed in formulating
their ideas and in erecting ingenious and masterful proofs. Even the
student of elementary mathematics is pleased by his success in prov-
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ing stereotyped exercises and by his ability to see light, meaning,
and order where formerly there was obscurity and confusion.

Nevertheless, it is true that mathematics generally appeals to the
emotions less than music, painting, and poetry do. And a person is
logically able to insist that the primary function of art is to arouse
emotions and stir feelings. According to this concept of art, however,
a dramatic photograph that catches at our hearts would be considered
more artistic than numerous great paintings; abstract painting and
much contemporary sculpture would probably be disregarded and
there would be doubt about the status of architecture and ceramics.
The still-life paintings of Picasso, impressionistic studies, such as
Monet’s, of atmospheric and light effects, the work of Seurat and
Cézanne, and the ‘arrangements’ of the Cubists would also fail to
satisfy the requirement. In fact, the pure art of modern times puts
emphasis on the theoretical and formal side of painting, on the use
of line and form, and on technical problems. Such work appeals
much more to the intellect than to the emotions (see plate xxvir).
Whereas most Renaissance paintings, despite the intellectual studies
involved in their composition, act directly on the emotions, the works
of modern artists must first be ‘figured out.” The requirement that
an art must stir the emotions would seem to be especially inapt today

An art must provide an outlet for the creative instinct of man.
A glance backward at the growth of our number system, the im-
provements in methods of calculation, the initiation and expansion
of new branches inspired by the problems of the arts, sciences, and
philosophy, and the refinements in standards of rigorous reasoning
shows that mathematicians create. The determination of the precise
assertions contained in the theorems, and the proofs which establish
those theorems, are acts of creation. As in the arts each detail of the
final work is not discovered but composed.

Of course the creative process must produce a work that has de-
sign, harmony, and beauty. These qualities, too, are present in math-
ematical creations. Design implies the presence of structural patterns,
of order, symmetry, and balance. Many mathematical theorems reveal
just such a design. Consider, for example, the following theorem of
plane geometry: Of all n-sided polygons with the same area, the reg-
ular n-sided polygon, that is, the one with equal sides and equal
angles, has least perimeter. So far, then, mathematics tells us that a
regular polygon requires less perimeter than a non-regular one with
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the same area and same number of sides. And now, of regular poly-
gons with different numbers of sides but with the same area, which
has least perimeter? The answer is that among regular polygons with
the same area the one with the greatest number of sides has least
perimeter. We can, of course, form regular polygons with any num-
ber of sides. Which figure then requires least perimeter for a given
area? Here even an intuitive feeling for design suggests the answer.
As the number of sides of a regular polygon increases the figure
approaches a circle in shape. The circle then should require least
perimeter. And this is a theorem of mathematics. Such theorems are
the essence of order and design.

Design is not merely accidental in mathematics. It is necessarily
present in any logical structure. Only through conscious design was
it possible for Euclid to produce the entire development of Euclidean
geometry from the few axioms he adopted at the outset.

An excellent example of design utilized as a principle in math-
ematical creation may be found in the construction of higher dimen-
sional geometries. Since x% 4 y? = 72 is the equation of a circle in a
plane and x? 4 9% + 22 = 7% is the equation of a sphere in three-
dimensional space, x* 4 y% 4 2% + w? = 12 is taken to be the equa-
tion of a hypersphere in four-dimensional space. Thus the design of
two- and three-dimensional co-ordinate geometry 1is deliberately car-
ried over to higher dimensions.

In any artistic creation the relation of the parts to each other and
of the parts to the whole must be harmonious. The harmony in
mathematical creations is partly intellectual in the form of logical
consistency. The theorems of any one mathematical system must be
in complete accord with each other. There are, however, other har-
monies. The entire structure of Fuclidean geometry is in harmony
with the mathematics of number. By means of co-ordinates it is pos-
sible to interpret geometrical concepts and theorems algebraically.
Conversely, algebraic equations have a geometric interpretation.
Thus the two creations are harmonious with each other.

Major mathematical themes have been harmonized with each
other. In our brief survey we have touched on four distinct branches
of geometry—EFuclidean, projective, and two non-Fuclidean geom-
etries. As we have viewed these subjects they appear distinct and in
some cases inconsistent with each other. Nevertheless, one of the most
satisfying mathematical contributions of recent times has shown that
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it is possible to erect projective geometry on an axiomatic basis in
such a way that the theorems of the other three geometries result as
specialized theorems of projective geometry. In other words, the con-
tent of all four geometries are now incorporated in one harmonious
whole.

Mathematics offers still another kind of harmony. The plan that
mathematics either imposes on nature or reveals in nature replaces
disorder with harmonious order. This is the essential contribution
of Ptolemy, Copernicus, Newton, and Einstein.

It is, of course, quite possible for a creation to possess all the formal
characteristics of a work of art and yet fail to belong to that category.
Many of the people who have listened to modern music or looked
at modern painting would hold this to be true of the art being pro-
duced today. The ultimate test of a work of art is its contribution
to aesthetic pleasure or beauty. Fortunately or unfortunately, this is
a subjective test and depends on the cultivation of a special taste.
Hence the question of whether mathematics possesses beauty can be
answered only by those who have studied the subject.

As a matter of fact, the search for aesthetic pleasure has always
influenced and prompted the development of mathematics. Out of
a host of themes and patterns which suggest themselves the mathe-
matician chooses those that satisfy a conscious or unconscious sense
of beauty. The Greeks of the classical period investigated geometry
because its forms and logical structure were beautiful to them. They
valued the discovery of geometrical relations in nature not because
such discoveries helped them to master nature but because they re-
vealed her beautiful structure. Copernicus, we saw, advocated the
new view of planetary motions because the mathematics of his theory
gave him aesthetic pleasure. And Kepler too valued the heliocentric
theory for this reason. ‘I have attested it as true in my deepest soul,’
he said, ‘and I contemplate its beauty with incredible and ravishing
delight.” Inspired by the work of Copernicus, Kepler himself spent
most of his life searching for aesthetically satisfying mathematical
laws. Newton also was genuinely concerned with beauty as the ulti-
mate sanction of his mathematical and scientific work. He speaks of
God as interested in the preservation of cosmic harmony and beauty.
We can find similar remarks and views in the writings of most math-
ematicians.

Indeed the aesthetic sense of the true mathematician is more de-
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manding than the most shrewish wife. Much research for new proofs
of theorems already correctly established is undertaken simply be-
cause the existing proofs have no aesthetic appeal. There are math-
ematical demonstrations that are merely convincing; to use a phrase
of the famous mathematical physicist, Lord Rayleigh, they ‘command
assent.” There are other proofs ‘which woo and charm the intellect.
They evoke delight and an overpowering desire to say, Amen, Amen.’
An elegantly executed proof is a poem in all but the form in which
it is written.

The tantalizing and compelling pursuit of mathematical problems
offers mental absorption, peace of mind amid endless challenges, re-
pose in activity, battle without conflict, ‘refuge from the goading
urgency of contingent happenings,’ and the sort of beauty changeless
mountains present to senses tried by the present-day kaleidoscope
of events.

The appeal offered by the detachment and objectivity of math-
ematical reasoning is superbly described by Bertrand Russell:

Remote from human passions, remote even from the pitiful facts of
nature, the generations have gradually created an ordered cosmos, where
pure thought can dwell as in its natural home and where one, at least,
of our nobler impulses can escape from the dreary exile of the actual
world.

Even laymen have been convinced of the artistic character of math-
ematical works. Thoreau says: “The most distinct and beautiful state-
ments of any truth must take at last the mathematical form.” The
reader who remains unimpressed may at least find the attitudes and
efforts of mathematicians more intelligible by knowing that these
men have sought beauty.

It would appear from the analysis above that the usual criteria of
an art are satisfied by mathematics. Nevertheless many people refuse
to grant the subject that status. Unconsciously, however, they do
acknowledge it. No one speaks of a talent or a gift for history or for
economics or even for biology. But most everyone speaks of a talent
or genius for mathematics, if only by way of regretting its absence.
Mathematical ability is thereby classed with artistic ability.

We regret that we cannot pursue further our investigation of the
subject matter, nature, and influences of mathematics. If time would
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permit the investigation of the more advanced branches of math-
ematics, we could then explore many more of the contributions
mathematics has made to our culture. Unfortunately it requires years
of study to master mathematical ideas and there is no royal road that
materially shortens the process. It is hoped that the material pre-
sented here has at least dispelled the impression that mathematics is
a closed book, a story told in Greek times, and a minor chapter in
the history of mankind, and that it has conveyed some understand-
ing of the position mathematics holds in our civilization and culture.

Unfortunately, mathematics does not solve all the problems man
faces. Reason, the axiomatic method, and quantitative analysis do
not serve as the approach to all phases of life. The artist may use
mathematical perspective but correct perspective is not in itself art.
Though the eighteenth-century thinkers were sure they could dis-
cover the laws of society and solve all social problems by means of
mathematics, the social order is unfortunately even more confused
today than it was in the eighteenth century. Nor would we recom-
mend mathematics as the means for solving the problems of romance
and marriage, though anthropologists at a recent symposium did
seriously urge the application of mathematics to just these problems.
The scope of mathematics is limited and the reason that it is limited
is succinctly stated in the phrase that man is a rational animal. His
rationality Is merely a qualification of his animality. And inasmuch
as man’s desires, emotions, and instincts are part of his animal nature
and often unsatisfied by and even opposed to his reason, reason alone
will not suffice to guide and control all of man’s activities. Of course
these remarks are not intended to imply that the application of reason
to the affairs of man has by any means reached the point of surfeit.

Mathematics is variously described as a body of knowledge, as a
practical tool, as a cornerstone of philosophy, as the perfection of
logical method, as the key to nature, as the reality in nature, as an
intellectual game, as an adventure in reason, and as an aesthetic
experience. Qur survey of mathematics should have indicated the
grounds for these descriptions. When we consider the number of
fields on which mathematics impinges and the number of these over
which it already gives us mastery or partial mastery, we are tempted
to call it a method of approach to the universe of physical, mental,
and emotional experiences. It is the distillation of highest purity that
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exact thought has extracted from man’s efforts to understand nature,
to impart order to the confusion of events occurring in the physical
world, to create beauty, and to satisfy the natural proclivity of the
healthy brain to exercise itself. We, who live in a civilization distin-
guished primarily by achievements owing their existence to math-
ematics, are in a position to bear witness to these statements.
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81, 93, 107, 126, 140, 144-5, 147, 164-
5, 168, 172, 178, 251, 389-91, g410-11,
416, 427-30, 4434, 451, 454, 468; and
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Elements of Euclid, Euclid, Greek
geometry

Fudoxus, 40, 80-81, 83, 212

Euler, Leonhard, 228, 232, 291

Event, 1%79-80, 441-3

F
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Felicific calculus, g26
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Focus of a parabola, 171-2

Fontenelle, Le Bovier de, 245

Force, 184, 191; see also Gravitation
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303; theorem of, 296-8, goz-3
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speech, 123, 269
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G
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Galileo, 78, g5, 97, 101, 105-0, 120, 123~
4, 182-g5, 196, 198, 207, 211-13, 214,
217, 236, 240-41, 252-3, 258, 262, 275,
320, 342, 382, 384, 388, 3956, 399.
452

Galton, Sir Francis, 3556, $85

Galvani, Luigi, 306
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Gases, theory of, 237, 320-21, 341, 373
4, 880

Gauss, Karl F., 199, 396, 413-15, 418-19

Geocentric theory, 82-5, 111-12

Geodesic, 419-21, 444-5

Geographia, f72-3

Germanic tribes, g2-§

Gibbon, Edward, 265-6

Gilbert, William, gos-6

Giotto, 129-32, 140

Graph of statistical data, 346-7
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236, 2524, 316, 324, 384, 388, 391,
428, 434-5, 439, 4456, 44952
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328, 427; see also Euclid, Euclidean
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H
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Hamilton, Sir William, 229
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Heat, theory of, 207-8, 237, 252, 885
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Hume, David, 24850, 258, 265-6, 324,
328

Huygens, Christian, g7, 109, 184, 236,
244, 253, 258, 275

Hyperbola, 6, 47, 49-50, 149-50, 164

Hypercurve, 180

INDEX

Hyperplane, equation of, 177-8
Hypersphere, equation of, 177

I

Index of Prohibited Books, 123, 236

Indirect measurement, 67-73
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Industrial Revolution, gg2, g41

Inertia, 187, 190

Infinite quantities, theory of, 5; see
also Number, infinite

Infra-red rays, g15-16

Inquisition, 123-4, 235

Instantaneous rate of change, 216-24,
247

Insurance, g41, 358, 365-8

J

James I, 234

Jeans, Sir James, 229, 466
Jefterson,” Thomas, 265, 329-30
Johnson, Samuel, 246, 273, 277, 279
Jonson, Ben, 122, 183

K

Kant, Immanuel, 238, 249-51, 271, 323,
410, 413, 427-8

Keats, John, 282

Kelvin, Lord, 13, 256, g10

Kepler, Johannes, 4, %8, 85, 95, 97,
101, 105, 112-23, 196, 212-13, 236,
258, 304, 320, 323, 342, 383-¢, 386,
388, 390-91, 452, 469

Kepler's laws, 114-15, 204-6, 216, 223,
285, 3834, 390

Kronecker, Leopold, 397

L

Lagrange, Joseph L., 159, 209,
232, 241, 255, 258

Lamb, Charles, 282

Lambert, Johann H., 134

Language, abstract, 273; mathematical,
8, 176-7, 2589-40; of science, 241-2

Laplace, Pierre S., 210, 213, 241, 255,
258, 2667, 359, 369

Law, 463-4
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236, 252, 316, 319, 324, 390, 451
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Leibniz, Gottfried W., 164, 184, 214-
15, 217, 231-2, 236, 239-41, 247, 258,
256, 258, 261-2, 269, 274, 287, 382,
396

Length, 437-8, 451; absolute, 439-40;
local, 439-40, 448

Leonardo da Vinci, 4, g9, 105, 127,
133, 135, 141-2, 850

Leverrier, Urbain J. J., 210, 304, 446

Light, 197, 2267, 237-8, 252, 310, 314~
20, 435, 489, 447, 465; see also Op-
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Limit, 230

Literature, Greek, g9, 56, 58; in New-
tonian age, 272-81, 284-5; Romantic
reaction, 281-4

Lobatchevsky, Nicholas, 413-18, 421-7,
429, 431, 444, 452

Locke, John, 244-6, 249, 263, 270-71,
275, 277, 282, 324, 328-31

Logic, 54-5, 2499-40; symbolic, 240

Logistica, 31

Lorenzetti, Ambrogio, 1g1-2
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Lucretius, 405

Luther, Martin, 1234, 234
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Magnetism, 305-6, §17, 20
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Mass, 190-91, 201-2, 434-5, 445-6; and
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Materialism, 2486, 252-4, 256, 259

Mathematical creation, 4-7, 430-31, 456-
60
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61
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structure of, 380-8z, 385

Maupertuis, Pierre L. M. de, 228-g

Maximum-minimum principle, 226-g9

Maxwell, James C., 304-6, g08-11, g14-
21, 874, 465
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Mécanique céleste, 210, 241, 266
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237-8, 243-4, 202, g19-20; see also
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tonian, 18g-95, 199-206, 241, 286,
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Medicine, 94-5, 341-3, 357-8, 365, 368
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Méré, Chevalier de, 359-60
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Method in philosophy, 161-3

Mettrie, Julian O. de la, 238, 253, 267,
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Michelangelo, 134, 142, 350

Michelson, Albert A., 436-7, 439, 451
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Mill, John S., 332

Millay, Edna 3t. V., 40

Milton, John, 8g, 110, 122-3

Minkowski, Hermann, 441-2, 451

Miracles, 263-5

Montaigne, Michel de, 26y

Montesquieu, Charles de 8. de, 339

Moore, Eliakim H., 408

Morley, Edward W., 436-7, 459, 451

Motion, concept of, 4o04-5; see also
Laws of motion

Museum of Alexandria, 61, 85, 87

Music, 33, 76, 94, 287-308, 4578
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19-21; medieval, g91; Pythagorean,
40-41, 76-8
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Newman, Cardinal john H., 268

Newton, Sir Isaac, 4, 6, 11, 12, 78, g%,
101, 109, 181, 184, 196-201, 204-6,
208-13, 214-15, 217, 223, 2§1-2, 236,
238, 240-41, 247, 2584, 258-62, 264,
266, 269, 275, 277, 281-2, 304, 316,
319, 323, 326, 342, 382, 384, 388-9,
891, 413, 428, 4335, 439-40, 449-51,
469

Non-Euclidean geometry, 5, 7, 251,
389, 418-31, 444, 451, 4535, 457
466, 468; and physical space, 418-
19, 421-2, 424-6

Normal frequency curve, g47-51, g69-
72, 378

Noyes, Alfred, 196

Number, abstract, 14; infinite, g97-
400; irrational, 36-7; prime, 458-g;
ratioual, g5-6; transfinite, 398

Numbers, theory of, 5, 81, 41, 164

(0]

Oersted, Hans C., 306, 309
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Spheres, 100, 110, 119

One-to-one correspondence, 396, 398

Optics, 81-2, 164-5, 172; see also Light

Ordinate, 168

Osler, Dr. William, 358

Oxford Movement, 268

P

Painting, 4; Babylonian, 21; Byzan-
tine, 128-30; Greek and Roman,
128; in Age of Reason, 285; mod-
ern, 143; Renaissance, 126-44, 147,
150, 157-8, 467

Pappus, 63

Parabola, 6, 49-50, 149-50, 164, 171-2;
equation of, 169-70

Paraboloid, equation of, 175-6

Paradox, Achilles and tortoise, 403%;
arrow, 403-4; logical, 406-8

INDEX

Parallel axiom, Euclid, 411, 457; Lo-
batchevsky and Bolyai, 415; Rie-
mann, 423

Pareto, Vilfredo, 335, 853-4

Partials of a musical sound, 298-g00

Pascal, Blaise, 147-50, 164, 207, 231,
267, 275, 35961, 863-4, 369, 3745

Pascal triangle, 364-5, 368, 371

Pascal’s wager, 375

Pearl, Raymond, 3358

Perspective, conceptual, 127-8; focused,
136-9, 143-5; mathematical, 127, 132-
43, 146-7, 151, 471; optical, 128-31,
157

Petty, Sir William, $43-4

Philosophy, Cartesian, 161-3; Greek,
11, 289, 314, 39, 558, 110; me-
chanical, 237-8; of science, 1838,
198, 206-7; of space and time, 449-
50; of Age of Reason, 243-56; Ren-
aissance, 103-g, 132, 139-40; see also
Determinism, Materialism, Statisti-
cal view of nature

Phonodeik, 290, 303

Physiocrats, 332

Picasso, Pablo, 467

Piero della Francesca, 133, 140-41

Pitch, 2989

Place value, 14-15, 93, 240

Plane, equation of, 175-6

Plato, 6, 24, 29, 31-3, 47, 50, 54, 61,
74, 78-80, 84, 91, 95, 114, 142, 178,
184, 213§

Platonic doctrine of ideas, 32-3

Poetry, 276-84

Poincaré, Henri, 397

Politics, 323-5, 328-32, 339

Pope, Alexander, 234, 272, 275, 278-
81, 322, 376, 432

Pope Gregory XV, 235

Pope Urban VIII, 124

Population growth, 333-7, 357

Primitive civilizations, 13

Principle of Least Actiomn, 228-9

Principle of Least Time, 226-7

Printing, 102

Probability, theory of, 5, g61-2, 374.
377-93

Projectile motion, 6, 194-5

Projection, 185-9, 14557
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Projective geometry, 5, 144-51, 157-8,
468-9

Proof, mathematical, 2v-8, 44-5, 54,
4589

Prose, emphasis on, 276-7; style, 274

Prudhomme, Sully, 60

Pscudosphere, 421

Psychology, 238, 323, 338-9, 365

Ptolemy, Claudius, 61, 63, 72-3, 84-5,
89, 111-12, 117-18, 120, 122, 143,
212, 258, 301, 428, 452, 469

Ptolemy the First, 61

Pythagoras, 6, 29, 40-41, 61, 114, 143,
287

Pythagorean theorem, 8-g, 35-6, 168

Pythagoreans, 32, 36, 40-41, 55, 758,
108, 128, 213, 254, 301

Q

Quadrivium, g4, 287

Quality of a musical sound, 298-300

Quantitative interpretation of nature,
78, 184-7, 211, 237

Quantum theory, 452

Quesnay, Francois, 238, 332

Quételet, Lambert A. J., 349-50, 856

R

Radar, 313-14

Radio, §11-14, 316-1%; see alse Electro-
magnetic waves

Raphael, 184, 142-3

Rarefaction, 288-go

Rational spirit, 10, 534, 103-4, 238-9,
286, 322-3, 330, 338

Rationalistic supernaturalism, 263

Rationalization of nature, 74-85, 104-
9, 1267, 187, 207-8, 237-8, 316-17

Rayleigh, Lord, 470

Reasoning by analogy, 25-8

Rectangular co-ordinate system, four-
dimensional, 177; three-dimensional,
173-6; two-dimensional, 167-9

Reed, Lowell J., 535-8

Reformation, 102-3, 119

Regular polygons, 47

Regular polyhedra, 47-8
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Relativity, theory of, 173, 229, 432-52;
General Theory of, 443; Special
Theory of, 442

Religion, Babylonian, 2g; Christian,
85; Egyptian, 19, 23; freedom of,
235-6, 26g; Greek, 4o0; influence of
rationalism on, 257-71; influence of
statistical view of nature on, 388;
relation to a maximum-minimnm
principle, 228-9; see also Christi-
anity

Renaissance, 97, 100-10g, 184, 237, 268

Revelation, 263, 263

Reynolds, Sir Joshua, 285

Ricardo, David, 334

Riemann, Bernhard, 422-7, 429, 431,
444, 452

Rigor, 229-33, 409

Rolle, Michel, 231

Rome, 11, 12, 66, 856, 93, 97, 287

Rousseau, Jean J., 249-50, 322-3

Royal Society, 274, 318

Russell, Bertrand, 5, 240, 403, 462, 470

S

Saccheri, Girolamo, 412-14

Saint Augustine, §, go

Saint Thomas Aquinas, g6, 185, 258

Sampling, g71-3

Scales, equal-tempered, go1-2; musical,
28y

Schoenberg, Arnold, go2

Scholastics, g6-7

Science, compared with mathematics,
10, 4%1; emancipation from theol-
ogy, 125; mathematization of, 240-
42, 316-17, 451-2; medieval concept
of, 185; modern approach to, 183-
g1, 198, 206-8; Renaissance concept
of, 108-9, 112

Scientific laws, nature of, 377-04, 433
4, 439

Sculpture, Greek, 11, 33-4, 39, 57;
Roman, g4, 86

Section, 135-9, 14557

Seurat, Georges, 467

Shaftesbury, Third Earl of, 270

Shelley, Percy B., 282

Signorelli, 134
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Similarity, 46, 67-8

Simultaneity, 457-40

Sine, 68, 70, 291-4, 308

Skepticism, 262, 266

Smith, Adam, 332

Snell, Willebrord, 226

Society, influence of, 5-6, 29, 101-2,
214-15

Socrates, 31, 54, 74, 142

Sound, 207, 287-303, 311-13, 385; see
also Music

Space, 106-7, 439; absolute, 434; de-
piction of, 129; four-dimensional,
177-80; mathematical compared with
physical, 428-g; relation to time,
442; three-dimensional, 129, 1735;
see also Dimension

Space-time, 179-80, 220, 442, 445, 449,
451

Space-time interval, 441-3

Speed, instantaneous, 216, 218

Sphere, equation of, 174; geometry on,
4257

Squaring the circle, 50-51, 458

Stability of solar system, 208-11, 258

Standard deviation, g45-6, 369-71

Statistical view of nature, 386

Stephen, Sir Leslie, 279

Straight line, equation of, 166-7; struc-
ture of, goo-402

Style, mathematical, 8

Summa Theologiae, 96

Superstition, 234-5; freedom from, 269

Surface, equation of, 175

Swift, Jonathan, go, 38, 272, 276

Symbolism, 7-8, 221

T

Tangent of an angle, 68-9
Taylor, Brook, 134

Television, 313

Tennyson, Alfred, 267

Thales, 24, 40-41, 75, 305

The Harmony of the World, 120
Thomson, James, 259

INDEX

Time, 106-7, 437-8, 451-2; absolute,
434, 439-40; local, 439-40, 448; rela-
tion to space, 442; structure of, 4o2

Tintoretto, 143

Tolerance, 268-9

Topographia Christiana, 89

Tratiato della Pittura, 132

Trigonometry, 10, 67-73, 84

Trisecting the angle, 5o-51, 458

Tristram Shandy, 395, 4056

Truth, g, 160-62, 243, 389-90, 410, 420
31; problem of, 243-52

U

Uccello, 140

Ultra-violet rays, 315-16

Undefined concepts, 42-3, 420, 454,
460-64

Universal laws, 212-14, 224, 2269

Universal mathematics, 165, 239-40

Utilitarianism, §30-31
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Vasari, Giorgio, 140

Volta, Alessandro, o6

Voltaire, 232, 2556, 264-5, 328, 595

W

Wallis, John, 244

Weight, 201-2, 434-5, 4456

Wesley, John, 234, 268

Whitehead, Alfred N., 11, 240, 450,
458 465

Witcheraft, 234-5

Wordsworth, William, 282-4
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